MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 15 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 15
$$\displaystyle\underset{x\rightarrow \dfrac{\pi}{4}}{Lt}\dfrac{\sqrt{2}-\cos x-\sin x}{(4x-\pi)^2}=?$$
Report Question
0%
$$\dfrac{1}{16\sqrt{2}}$$
0%
$$\dfrac{1}{32\sqrt{2}}$$
0%
$$\dfrac{1}{16}$$
0%
$$\dfrac{1}{8}$$
$$ \lim _{x \rightarrow 0} \frac{1-\cos ^{3} x}{x \sin 2 x}= $$
Report Question
0%
1$$ / 2 $$
0%
3$$ / 2 $$
0%
3$$ / 4 $$
0%
1$$ / 4 $$
The value of $$\underset { x\rightarrow 0 }{ lim } \left( \left( sinx \right) ^{ 1/x }+\left( \dfrac { 1 }{ x } \right) ^{ sinx } \right) $$ equals
Report Question
0%
0
0%
1
0%
$$\infty $$
0%
-1
$$\lim _ { x \rightarrow 0 } \frac { \ln ( \sin 3 x ) } { \ln ( \sin x ) }$$ is equal to
Report Question
0%
0
0%
1
0%
2
0%
none of these
$$\underset { x\rightarrow 0 }{ lim } \dfrac { 1 }{ { e }^{ 2 } } tan\left( \dfrac { \pi }{ 4 } +x \right) ^{ 1/x }$$
Report Question
0%
0
0%
1
0%
-1
0%
e
The value of $$\theta ,\quad is$$
$$\underset { o\rightarrow o }{ lim } \quad \frac { { cos }^{ 2 }\left\{ 1-{ cos }^{ 2 }\quad \left( 1-{ cos }^{ 2 }\quad .....\left( { cos }^{ 2 }\left\{ 1-{ cos }^{ 2 }\theta \right\} \right) \right) \right\} }{ sin\left( \frac { \pi (\sqrt { \theta +4 } -2 }{ \theta } \right) } $$
Report Question
0%
$$\frac { \sqrt { 2 } }{ 4 } $$
0%
$$\sqrt { 2 } $$
0%
1
0%
2
$$\lim _{ x\rightarrow \infty }{ \frac { \sin { x } \sin { (\frac { \pi }{ 3 } +x) } \sin { (\frac { \pi }{ 3 } -x) } }{ x } } =$$
Report Question
0%
$$\frac { 3 }{ 4 } $$
0%
$$\frac { 1 }{ 4 } $$
0%
$$\frac { 4 }{ 3 } $$
0%
$$0$$
If $$ \alpha , \beta , \ in (-\frac{\pi}{2},0) $$ such that $$(sin \alpha +sin \beta ) +\frac{sin \alpha }{sin \beta} =0 $$ and $$(sin \alpha +sin \beta ) \frac{sin \alpha}{sin \beta }=-1 $$ and $$\lambda =\begin{matrix} lim \\ n\rightarrow \infty \end{matrix}\frac { 1+(2sin\quad theta\quad ){ }^{ 2n } }{ (2sin\quad \quad beta\quad ){ }^{ 2n } } $$ then
Report Question
0%
$$2 \alpha +3 \beta = \frac{-5 \pi }{6}$$
0%
$$ \lambda \pi +\alpha +\beta =\frac{5 \pi}{6}$$
0%
$$ \alpha - \beta = \frac{ \pi }{3}$$
0%
$$ \alpha + \beta = \frac{- \pi }{3}$$
$$\cfrac { d }{ dx } \left( \sin ^{ 5 }{ x } \sin { 5x } \right) =$$
Report Question
0%
$$ \left( \sin ^{ 4 }{ x } \sin { 5x } \right)$$
0%
$$5 \left( \sin ^{ 4 }{ x } \sin { 5x } \right)$$
0%
$$5 \left( \sin ^{ 4 }{ x } \sin { 6x } \right)$$
0%
$$-5 \left( \sin ^{ 4 }{ x } \sin { 6x } \right)$$
$$\lim _{ x\rightarrow 0 }{ \frac { { 27 }^{ x }-{ 9 }^{ x }-{ 3 }^{ x }+1 }{ \sqrt { 2 } -\sqrt { 1+\cos { x } } } = } $$
Report Question
0%
$$0$$
0%
$$8\sqrt { 2 } { (\log { 3 } ) }^{ 2 }$$
0%
$$8{ (\log { 3 } ) }^{ 2 }$$
0%
$$1$$
$$\mathop {\lim }\limits_{h \to 0} \frac{{\sin \left( {a + 3h} \right) - 3\sin \left( {a + 2h} \right) + 3\sin \left( {a + h} \right) - \sin a}}{{{h^3}}}$$ is equal to
Report Question
0%
$$\cos a$$
0%
$$ - \cos a$$
0%
$$\sin a$$
0%
$$\sin a\cos a$$
$$L\underset { x\rightarrow \infty }{ im } \left( \sin { \sqrt { x+1 } -\sin { \sqrt { x } } } \right) =$$
Report Question
0%
2
0%
-2
0%
0
0%
1
$$\lim _{ x\rightarrow }{ 0 } \{ (sinx-x)/{ x }^{ 3 })\} $$ equals:
Report Question
0%
$$1/3$$
0%
$$-1/3$$
0%
$$1/6$$
0%
$$-1/6$$
Solve
$$\underset { x\rightarrow 0 }{ Lim } \frac { 8 }{ { x }^{ 8 } } \left( 1-cos\frac { { x }^{ 2 } }{ 2 } -cos\frac { { x }^{ 2 } }{ 4 } +cos\cfrac { { x }^{ 2 } }{ 2 } .cos\cfrac { { x }^{ 2 } }{ 4 } \right) =$$
Report Question
0%
$$\cfrac { 1 }{ 16 } $$
0%
$$\cfrac { 1 }{ 15 } $$
0%
$$\cfrac { 1 }{ 32 } $$
0%
$$1$$
$$\mathop {\lim }\limits_{x \to \pi /2} \left[ {x\tan x - \left( {\frac{\pi }{2}} \right)\sec x} \right]$$ is equal to
Report Question
0%
1
0%
-1
0%
0
0%
None of these
$$ \lim _ { x \rightarrow 0 } \frac { \sin x } { x } = y $$
Report Question
0%
$$
y > 1
$$
0%
$$
y < 1
$$
0%
$$
y \geq 1
$$
0%
$$
y \leq 1
$$
The value of $$\mathop {{\text{Limit}}}\limits_{x \to 0} \frac{{\cos \left( {\sin x} \right) - \cos x}}{{{x^4}}}$$ is equal to
Report Question
0%
1/5
0%
1/6
0%
1/4
0%
1/2
$$\underset { x\rightarrow 0 }{ lim } \cfrac { 8 }{ { x }^{ 8 } } \left( 1-cos\cfrac { { x }^{ 2 } }{ 2 } -cos\cfrac { { x }^{ 2 } }{ 4 } +cos\cfrac { { x }^{ 2 } }{ 2 } .cos\cfrac { { x }^{ 2 } }{ 4 } \right) =$$
Report Question
0%
$$\cfrac { 1 }{ 16 } $$
0%
$$\cfrac { 1 }{ 15 } $$
0%
$$\cfrac { 1 }{ 32 } $$
0%
$$1$$
$$\displaystyle \lim _{ x\rightarrow 0 }{ \left[ \dfrac { 100\tan { x } .\sin { x } }{ { x }^{ 2 } } \right] } $$ where $$[.]$$ represents greatest integer function is
Report Question
0%
$$99$$
0%
$$100$$
0%
$$0$$
0%
$$98$$
The value of $$\lim _ { x \rightarrow \dfrac { 1 } { 2 } } \dfrac { 2 \sin ^ { - 1 } x - \dfrac { \pi } { 2 } } { 1 - 2 x ^ { 2 } }$$ is equal to
Report Question
0%
$$-1$$
0%
$$0$$
0%
$$1$$
0%
$$2$$
The value of $$ \lim _ { x \rightarrow 0 } \dfrac { \sin^3 ( \sqrt { x } ) \ln ( 1 + 3 x ) } { \left( \tan ^ { - 1 } \sqrt { x } \right) ^ { 2 } \left( e ^ { 5 ( \sqrt { x } ) } - 1 \right)x } $$ is equal to
Report Question
0%
$$
\frac { 1 } { 5 }
$$
0%
$$
\frac { 3 } { 5 }
$$
0%
$$
\frac { 2 } { 5 }
$$
0%
$$
\frac { 4 } { 5 }
$$
The value of $$\lim _{ x\rightarrow \frac { \pi }{ 2 } }{ \tan ^{ 2 }{ \left( \sqrt { 2\sin ^{ 2 }{ x } +3\sin { x } +4 } -\sqrt { \sin ^{ 2 }{ x } +6\sin { x } +2 } \right) } } $$ is equal to
Report Question
0%
0
0%
$$\cfrac{1}{11}$$
0%
$$\cfrac{1}{12}$$
0%
$$\cfrac{1}{8}$$
If x sin $$(\alpha +y)=siny\quad and\quad y'\quad =\quad \frac { m }{ \left( { x }^{ 2 }+ \right) nx+ } ,$$ then
Report Question
0%
m-n=1
0%
m+n=1
0%
$${ m }^{ 2 }+{ n }^{ 2 }=1$$
0%
m=n
$$\mathop {\lim }\limits_{x \to \infty } \left( {\dfrac{{{x^2}\sin \left( {\dfrac{1}{x}} \right) - x}}{{1 - \left| x \right|}}} \right) = $$
Report Question
0%
0
0%
1
0%
-1`
0%
2
$$\mathop {Lt}\limits_{x \to 1} {\left( {1 - x} \right)^{\tan \pi x}} = $$
Report Question
0%
$$-1$$
0%
$$0$$
0%
$$1$$
0%
$$2$$
Let $$a \in \left( 0 , \frac { \pi } { 2 } \right)$$, then the value of
$$ \lim _ { a \rightarrow 0 } \frac { 1 } { a ^ { 3 } } \int _ { 0 } ^ { a } \ell n (1+tan a tan x)dx$$ is equal to
Report Question
0%
$$\frac { 1 }{ 3 } $$
0%
$$\frac { 1 }{ 2 } $$
0%
$$\frac { 1 }{ 6 } $$
0%
1
Find:
$$\underset { x\rightarrow 0 }{ lim } \quad \dfrac { 1-cos^{ 3 }x }{ xsin2x } =\quad $$
Report Question
0%
1/2
0%
3/2
0%
3/4
0%
1/4
$$\underset { \rightarrow }{ Lim } \frac { 1-{ cos }^{ 2 }x }{ xsin2x } $$
Report Question
0%
1/2
0%
3/2
0%
3/4
0%
1/4
The value of $$\mathop {\lim }\limits_{x \to 0} \frac{{\sec 5x - \sec 3x}}{{\sec 3x - \sec x}}$$
Report Question
0%
-2
0%
1
0%
2
0%
-1/2
$$y=\sec { \left( \tan ^{ -1 }{ x } \right) } $$ then at $$x=1$$ value of $$\dfrac { dy }{ dx } $$ equals :
Report Question
0%
$$\dfrac { 1 }{ 2 } $$
0%
1
0%
$$\sqrt {2 }$$
0%
$$\dfrac { 1 }{ \sqrt {2 } } $$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page