MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 16 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 16
$$\lim _ { x \rightarrow 0 } \int _ { 0 } ^ { x } \dfrac { \left( \tan ^ { - 1 } t \right) ^ { 2 } } { \sqrt { 1 + x ^ { 2 } } } d t$$ is equal to
Report Question
0%
$$\pi ^ { 2 }$$
0%
$$\dfrac { \pi ^ { 2 } } { 2 }$$
0%
$$\dfrac { \pi ^ { 2 } } { 4 }$$
0%
None of these
If $$x = 3\cos \theta - 2\cos^{3} \theta$$ and $$y = 3\sin \theta - 2\sin^{3}\theta$$, then $$\dfrac {dy}{dx} =$$
Report Question
0%
$$\sin \theta$$
0%
$$\cos \theta$$
0%
$$\tan \theta$$
0%
$$\cot \theta$$
the value of $$\underset { x\longrightarrow \infty }{ lim } \frac { { X }^{ 4 }sin\left( \frac { 1 }{ x } \right) +{ x }^{ 3 } }{ 1+\left| x \right| ^{ 3 } } $$
Report Question
0%
1
0%
-1
0%
2
0%
does not exist
If $$y=e^{\sin^{2}x +\sin^{4}x + \sin ^{6}x +....+\infty} $$ , then $$\dfrac {dy}{dx} =?$$
Report Question
0%
$$2~\tan x~\sec^2x~e^{\tan^2~x}$$
0%
$$2~\sec^2x~e^{\tan^2~x}$$
0%
$$\sec^2x~e^{\tan^2~x}$$
0%
$$\tan x~\sec x~e^{\tan^2~x}$$
$$\underset { x\rightarrow 1 }{ lim } { \left[ cosec { \dfrac { \pi x }{ 2 } } \right] }^{ { 1 }/{ \left( 1-x \right) } }$$ (where $$[.]$$ represents the greatest integer function) is equal to
Report Question
0%
$$0$$
0%
$$1$$
0%
$$\infty$$
0%
$$Does \ not \ exist$$
$$\lim _{ x\rightarrow 0 }{ \dfrac { 1-\cos { x } }{ { { x\log { (1+x) } } } } } $$ =
Report Question
0%
1
0%
0
0%
-1
0%
1/2
If $$\alpha$$ and $$\beta$$ be the roots of the equation $$ax^{2} + bx + c = 0$$ then $$\displaystyle \lim_{x\rightarrow \dfrac {1}{\alpha}} \sqrt {\dfrac {1 - \cos^{2} (cx^{2} + bx + a)}{4(1 - \alpha x)^{2}}}$$
Report Question
0%
Does not exist
0%
Equals $$\left |\dfrac {c}{2\alpha} \left (\dfrac {1}{\alpha} +\dfrac {1}{\beta}\right )\right |$$
0%
Equals $$\left |\dfrac {c}{2\alpha} \left (\dfrac {1}{\alpha} - \dfrac {1}{\beta}\right )\right |$$
0%
Equals $$\left |\dfrac {c}{2} \left (\dfrac {1}{\alpha} +\dfrac {1}{\beta}\right )\right |$$
The value of $$\begin{matrix} lim \\ x\rightarrow \frac { 1 }{ \sqrt { 2 } } \end{matrix}\dfrac { x-cos\left( { sin }^{ -1 }x \right) }{ 1-tan\left( { sin }^{ -1 }x \right) } is$$
Report Question
0%
$$-\dfrac { 1 }{ \sqrt { 2 } } $$
0%
$$\dfrac { 1 }{ \sqrt { 2 } } $$
0%
$$\sqrt { 2 } $$
0%
$$-\sqrt { 2 } $$
$$\overset {lim}{x \rightarrow \pi/2} \dfrac{\sin(x \ cos x)}{cos(x\, \ sin x)}$$ is equal to
Report Question
0%
$$1$$
0%
$$\dfrac{\pi}{2}$$
0%
$$\dfrac{2}{\pi}$$
0%
does not exist
$$\underset { x\rightarrow 0 }{ lim } \dfrac { sec4x-sec2x }{ sec3x-secx } =$$
Report Question
0%
3/2
0%
2/3
0%
1/3
0%
3/4
$$\cfrac { d }{ dx } \left( 3\cos { \left( \cfrac { \pi }{ 6 } +{ x }^{ 0 } \right) } -4\cos ^{ 3 }{ \left( \cfrac { \pi }{ 6 } +{ x }^{ 0 } \right) } \right) =....\quad $$
Report Question
0%
$$\cos { \left( 3{ x }^{ 0 } \right) } $$
0%
$$\cfrac { \pi }{ 60 } \sin { \left( 3{ x }^{ 0 } \right) } $$
0%
$$\cfrac { \pi }{ 60 } \cos { \left( 3{ x }^{ 0 } \right) } $$
0%
$$-\cfrac { \pi }{ 60 } \sin { \left( 3{ x }^{ 0 } \right) } $$
Explanation
we know that
$$cos(3x)=4cos^3x-3cosx$$
so
$$\cfrac { d }{ dx } \left( -\cos { 3\left( \cfrac { \pi }{ 6 } +{ x }^{ 0 } \right) } \right) $$
$$=\cfrac { d }{ dx } \left( -\cos { \left( \cfrac { \pi }{ 2 } +3{ x }^{ 0 } \right) } \right) $$
$$=\cfrac { d }{ dx } \left( \sin { 3x\cfrac { \pi }{ 180 } } \right) $$
$$=\cfrac { 3\pi }{ 180 } \cos { \left( 3{ x }^{ 0 } \right) } \quad $$
$$=\cfrac { \pi }{ 60 } \cos { \left( 3{ x }^{ 0 } \right) } $$
Value of $$L=\displaystyle\lim_{n\rightarrow \infty n}\dfrac{1}{4}\left[1.\left(\displaystyle\sum_{k=1}^{n}k\right)+2.\left(\sum_{k=1}^{n-1}k\right)+3.\left(\sum_{k=1}^{n-2}k\right)+...+n.1\right]$$ is
Report Question
0%
$$1/24$$
0%
$$1/12$$
0%
$$1/6$$
0%
$$1/3$$
Explanation
If $$y=4^{log2sinx}+9^{log3cosx}$$ then $$\frac{dy}{dx}$$ =
Report Question
0%
0
0%
1
0%
-1
0%
2
Let $$\displaystyle x^{cos\,y} + y^{cox\,x} = 5 $$ , Then
Report Question
0%
$$ at x = 0 , y =0 ,{y}' =0 $$
0%
$$ at x = 0 , y = 1 , {y}' = 0 $$
0%
$$ at x = y , y = 1 , {y}' = -1 $$
0%
$$ at x = 1 , y = 0 , {y}' = 1 $$
The value of $$\displaystyle \lim_{n\infty}\dfrac{1}{n^2}\left\{ sin^3\dfrac{\pi}{4n}+2sin^3\dfrac{2\pi}{4n} + ... + nsin^3\dfrac{n\pi}{4n}\right\}$$ is equal to
Report Question
0%
$$\dfrac{\sqrt{2}}{9\pi^2}(52-15 \pi )$$
0%
$$\dfrac{2}{9\pi^2}(52-15n)$$
0%
$$\dfrac{1}{9\pi^2}(15n-15)$$
0%
None of these
If $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{x^{n}-\sin x^{n}}{x-\sin ^{n} x} $$ is non-zero finite, then $$ n $$ must be equal
Report Question
0%
4
0%
1
0%
2
0%
3
If $$ L=\displaystyle \lim _{x \rightarrow 0} \dfrac{\sin x+a e^{x}+b e^{-x}+c \ln (1+x)}{x^{3}}=\infty $$
Equation $$ a x^{2}+b x+c=0 $$ has
Report Question
0%
real and equal roots
0%
complex roots
0%
unequal positive real roots
0%
unequal roots
$$\displaystyle \lim _{x \rightarrow \infty} \dfrac{2+2 x+\sin 2 x}{(2 x+\sin 2 x) e^{\sin x}} $$ is equal to
Report Question
0%
0
0%
1
0%
-1
0%
Does not exists
$$\displaystyle \lim _{x \rightarrow \pi / 2} \dfrac{\sin (x \cos x)}{\cos (x \sin x)} $$ is equal to
Report Question
0%
0
0%
p/2
0%
p
0%
2p
The value of $$ \displaystyle \lim _{x \rightarrow 0} \dfrac{\sqrt{\dfrac{1}{2}(1-\cos 2 x)}}{x} $$ is
Report Question
0%
1
0%
-1
0%
0
0%
None of these
Solution of the equation $$ \dfrac {dy }{dx} + \dfrac {1}{x} \tan y = \dfrac {1}{x^2} \tan y \sin y$$ is
Report Question
0%
$$ 2x = sin y ( x ) $$
0%
$$ 2x =sin y ( 1 +cx^2) $$
0%
$$ 2x +sin y ( 1 +cx^2 ) $$
0%
None of these
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page