Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 16 - MCQExams.com

limx0x0(tan1t)21+x2dt  is equal to
  • π2
  • π22
  • π24
  • None of these
If x=3cosθ2cos3θ and y=3sinθ2sin3θ, then dydx=
  • sinθ
  • cosθ
  • tanθ
  • cotθ
the value of limxX4sin(1x)+x31+|x|3
  • 1
  • -1
  • 2
  • does not exist
If y=esin2x+sin4x+sin6x+....+ , then dydx=?
  • 2 tanx sec2x etan2 x
  • 2 sec2x etan2 x
  • sec2x etan2 x
  • tanx secx etan2 x
limx1[cosecπx2]1/(1x) (where [.] represents the greatest integer function) is equal to
  • 0
  • 1
  • Does not exist
limx01cosxxlog(1+x) =
  • 1
  • 0
  • -1
  • 1/2
If α and β be the roots of the equation ax2+bx+c=0 then limx1α1cos2(cx2+bx+a)4(1αx)2
  • Does not exist
  • Equals |c2α(1α+1β)|
  • Equals |c2α(1α1β)|
  • Equals |c2(1α+1β)|
The value of limx12xcos(sin1x)1tan(sin1x)is
  • 12
  • 12
  • 2
  • 2
limxπ/2sin(x cosx)cos(x sinx) is equal to
  • 1
  • π2
  • 2π
  • does not exist
limx0sec4xsec2xsec3xsecx=
  • 3/2
  • 2/3
  • 1/3
  • 3/4
ddx(3cos(π6+x0)4cos3(π6+x0))=....
  • cos(3x0)
  • π60sin(3x0)
  • π60cos(3x0)
  • π60sin(3x0)
Value of L=limnn14[1.(nk=1k)+2.(n1k=1k)+3.(n2k=1k)+...+n.1] is
  • 1/24
  • 1/12
  • 1/6
  • 1/3
If y=4log2sinx+9log3cosx  then  dydx
  • 0
  • 1
  • -1
  • 2
Let xcosy+ycoxx=5 , Then 
  • atx=0,y=0,y=0
  • atx=0,y=1,y=0
  • atx=y,y=1,y=1
  • atx=1,y=0,y=1
The value of limn1n2{sin3π4n+2sin32π4n+...+nsin3nπ4n} is equal to 
  • 29π2(5215π)
  • 29π2(5215n)
  • 19π2(15n15)
  • None of these
If limx0xnsinxnxsinnx is non-zero finite, then n must be equal
  • 4
  • 1
  • 2
  • 3
If L=limx0sinx+aex+bex+cln(1+x)x3=

Equation ax2+bx+c=0 has
  • real and equal roots
  • complex roots
  • unequal positive real roots
  • unequal roots
limx2+2x+sin2x(2x+sin2x)esinx is equal to
  • 0
  • 1
  • -1
  • Does not exists
limxπ/2sin(xcosx)cos(xsinx) is equal to
  • 0
  • p/2
  • p
  • 2p
The value of limx012(1cos2x)x is
  • 1
  • -1
  • 0
  • None of these
Solution of the equation dydx+1xtany=1x2tanysiny is 
  • 2x=siny(x)
  • 2x=siny(1+cx2)
  • 2x+siny(1+cx2)
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers