CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 2 - MCQExams.com

Find $$\dfrac{{dy}}{{dx}}$$ of the following $$y = 1 + 2x + 3{x^2} + \left( {n - 1} \right){x^{n - 2}}$$

  • $$x+2x^2+6x^3+(n-1)(n-2)x^{n-3}$$
  • $$2+6x+(n-1)x^{n-2}$$
  • $$2+6x+(n-1)(n-2)x^{n-3}$$
  • None
If $$f(x) = sin x$$, find $$\frac{dy}{dx}$$.
  • $$cosx$$
  • $$-cosx$$
  • $$cotx$$
  • $$-cot^2x$$
$$x^{\frac{1}{2}} + 1=  t$$
differentiate w.r.t. x
  • $$\dfrac{dt}{dx} = \dfrac{1}{2\sqrt{x}}$$
  • $$\dfrac{dt}{dx} = \dfrac{1}{4\sqrt{x}}$$
  • $$\dfrac{dt}{dx} = \dfrac{1}{8\sqrt{x}}$$
  • $$\dfrac{dt}{dx} = \dfrac{1}{16\sqrt{x}}$$
Differentiate: $$x^{100} + \sin x - 1$$
  • $$100x^{99}-\cos x$$
  • $$100x^{99}+\cos x$$
  • $$x^{99}+\cos x$$
  • $$100x^{99}+\sin x$$
$$\lim_{x\rightarrow\ 0}\dfrac{\sin7x}{\sin3x}$$ equals
  • $$\dfrac{7}{3}$$
  • $$\dfrac{10}{3}$$
  • $$\dfrac{14}{3}$$
  • $$\dfrac{1}{3}$$
Consider the differential equation $$\frac { d y } { d x } = \cos x$$ Then we observe that 
  • $$y = \sin x$$
  • $$y = \sin x + 2$$
  • $$y = \sin x - \frac { 1 } { 2 }$$
  • $$y = \sin x + c$$
Which of the following statement is not correct
  • $$\displaystyle \lim _{ x\rightarrow c }{ \left[ f\left( x \right) +g\left( x \right) \right] } =\lim _{ x\rightarrow c }{ f\left( x \right) } +\lim _{ x\rightarrow c }{ g\left( x \right) } $$
  • $$\displaystyle \lim _{ x\rightarrow c }{ \left[ f\left( x \right) -g\left( x \right) \right] } =\lim _{ x\rightarrow c }{ f\left( x \right) } -\lim _{ x\rightarrow c }{ g\left( x \right) } $$
  • $$\displaystyle \lim _{ x\rightarrow c }{ \left[ f\left( x \right) .g\left( x \right) \right] } =\lim _{ x\rightarrow c }{ f\left( x \right) } .\lim _{ x\rightarrow c }{ g\left( x \right) } $$
  • $$\displaystyle \lim _{ x\rightarrow c }{ \dfrac { f\left( x \right) }{ g\left( x \right) } } =\displaystyle \dfrac { \lim _{ x\rightarrow c }{ f\left( x \right) } }{ \lim _{ x\rightarrow c }{ g\left( x \right) } } $$
Evaluate the following limit :
$$lim_{x\rightarrow 0} \dfrac{1-\cos 2x}{x^2}$$
  • $$0$$
  • $$1$$
  • $$2$$
  • none of these
Evaluate $$\displaystyle \lim_{n\rightarrow \infty} \dfrac{1+2+3+...+n}{n^2}$$
  • $$\cfrac { 1 }{ 2 } $$
  • $$1$$
  • $${ 3 }^{ 2 }$$
  • $$\cfrac { 1 }{ { 2 }^{ 2 } } $$
if $$y=5x^2+8x$$ find $$\dfrac {dy}{dx}$$
  • $$10x+8$$
  • $$5x+8$$
  • $$10x^2+8x$$
  • none of these
If $$y=e^{\sin \sqrt x}$$ then $$\dfrac{dy}{dx}=?$$
  • $$e^{\sin \sqrt x}.\cos \sqrt x$$
  • $$\dfrac{e^{\sin \sqrt x}\cos \sqrt x}{2\sqrt x}$$
  • $$\dfrac{e^{\sin \sqrt x}}{2\sqrt x}$$
  • $$none\ of\ these$$
If $$y=x^2\sin \dfrac{1}{x}$$ then $$\dfrac{dy}{dx}=?$$
  • $$x\sin \dfrac{1}{x}-\cos \dfrac{1}{x}$$
  • $$-\cos \dfrac{1}{x}+2x\sin \dfrac{1}{x}$$
  • $$-x\sin \dfrac{1}{x}+\cos \dfrac{1}{x}$$
  • $$none\ of\ these$$
If $$(x+y)=\sin (x+y)$$ then $$\dfrac{dy}{dx}=?$$
  • $$-1$$
  • $$1$$
  • $$\dfrac{1-\cos (x+y)}{\cos^2(x+y)}$$
  • $$none\ of\ these$$
If $$x=a\cos^{2}\theta, y=b\sin^{2}\theta$$ then $$\dfrac{dy}{dx}=?$$
  • $$\dfrac{-a}{b}$$
  • $$\dfrac{a}{b}\cot \theta$$
  • $$\dfrac{-b}{a}$$
  • $$none\ of\ these$$
If $$y=\cos^2 x^3$$ then $$\dfrac{dy}{dx}=?$$
  • $$-3x^2\sin (2x^3)$$
  • $$-3x^2\sin^2x^3$$
  • $$-3x^2\cos^2(2x^3)$$
  • $$none\ of\ these$$
lf $$ \displaystyle \lim _{ x\rightarrow 0 } \left(\displaystyle  \frac { \cos  4x+a\cos  2x+b }{ x^{ 4 } }  \right) $$ is finite then the value of $$a,b$$ respectively are
  • $$5\, -4$$
  • $$-5,\ -4$$
  • $$-4,\ 3$$
  • $$4,\ 5$$

$$\displaystyle \lim_{x\rightarrow 1}(1-x)\tan(\displaystyle \frac{\pi x}{2})=$$
  • $$\pi$$
  • $$ 2\pi$$
  • $$\displaystyle \frac{\pi}{2}$$
  • $$\displaystyle \frac{2}{\pi}$$

$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{1-\cos^{3}x}{x\sin 2x}$$=
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{3}{2}$$
  • $$\displaystyle \frac{3}{4}$$
  • $$\displaystyle \frac{1}{4}$$
$$\displaystyle \lim_{x\rightarrow 0}\frac{1-\cos x}{x\log(1+x)}=$$
  • $$1$$
  • $$0$$
  • $$-1$$
  • $$\displaystyle \dfrac{1}{2}$$
Solve : $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \dfrac{\sin x\sin\left(\dfrac{\pi}{3}+x\right)\sin\left(\dfrac{\pi}{3}-x\right)}{x}$$
  • $$\displaystyle \frac{3}{4}$$
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{4}{3}$$
  • $$0$$
$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{(1-\cos 2x)\sin 5x}{x^{2}\sin 3x}=$$
  • $$\dfrac{10}{3}$$
  • $$\dfrac{3}{10}$$
  • $$\dfrac{6}{5}$$
  • $$\dfrac{5}{6}$$
The value of $$\displaystyle \lim _{ \alpha \rightarrow \beta  }{ \left[ \frac { \sin ^{ 2 }{ \alpha  } -\sin ^{ 2 }{ \beta  }  }{ { \alpha  }^{ 2 }-{ \beta  }^{ 2 } }  \right]  } $$ is:
  • $$0$$
  • $$1$$
  • $$\displaystyle \frac { \sin { \beta  }  }{ \beta  } $$
  • $$\displaystyle \frac { \sin { 2\beta  }  }{ 2\beta  } $$
Evaluate: $$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{\sec 4x-\sec 2x}{\sec 3x-\sec x}$$
  • $$\displaystyle \frac{3}{2}$$
  • $$\displaystyle \frac{2}{3}$$
  • $$\displaystyle \frac{1}{3}$$
  • $$\displaystyle \frac{3}{4}$$
$$\displaystyle \lim_{x\rightarrow 0}\frac{e^{x}-e^{\sin x}}{2(x-\sin x)}=$$
  • $$-\dfrac{1}{2}$$
  • $$\dfrac{1}{2}$$
  • $$1$$
  • $$\dfrac{3}{2}$$

$$\displaystyle \lim_{x \rightarrow\frac{\pi}{2}}\displaystyle \dfrac{cosecx-\cot x}{x}$$=
  • $$1$$
  • $$\displaystyle \frac{2}{\pi}$$
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{5}$$
$$\displaystyle \lim_{x\rightarrow \dfrac{\pi }{4}}\displaystyle \frac{\sec x.\tan(4x-\pi)}{\sin(4x-\pi)}$$=
  • $$\sqrt{2}$$
  • $$\displaystyle \frac{1}{\sqrt{2}}$$
  • $$-\sqrt{2}$$
  • $$\displaystyle \frac{-1}{\sqrt{2}}$$

$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{x\tan 2x-2x\tan x}{(1-\cos 2x)^{2}}$$=
  • $$2$$
  • $$-2$$
  • $$\displaystyle \frac{1}{2}$$
  • $$-\displaystyle \frac{1}{2}$$
$$\displaystyle \lim_{x\rightarrow \frac{\pi }{6}}\frac{3\sin x-\sqrt{3}\cos x}{6x-\pi }=$$
  • $$\sqrt{3}$$
  • $$\dfrac{1}{\sqrt{3}}$$
  • $$-\sqrt{3}$$
  • $$-\dfrac{1}{\sqrt{3}}$$
$$\displaystyle \lim_{x\rightarrow 0}\frac{tan x^{0}}{x}=$$
  • 0
  • 1
  • $$\displaystyle \frac{\pi}{180}$$
  • $$\pi$$

$$\displaystyle \lim_{x\rightarrow 0}\displaystyle \frac{3\sin x-\sin 3x}{x^{3}}$$=
  • $$0$$
  • $$1$$
  • $$(\displaystyle \frac{\pi}{180})^{3}$$
  • $$4.(\displaystyle \frac{\pi}{180})^{3}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers