Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 2 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 2
Find
d
y
d
x
of the following
y
=
1
+
2
x
+
3
x
2
+
(
n
−
1
)
x
n
−
2
Report Question
0%
x
+
2
x
2
+
6
x
3
+
(
n
−
1
)
(
n
−
2
)
x
n
−
3
0%
2
+
6
x
+
(
n
−
1
)
x
n
−
2
0%
2
+
6
x
+
(
n
−
1
)
(
n
−
2
)
x
n
−
3
0%
None
Explanation
y
=
1
+
2
x
+
3
x
2
+
(
n
−
1
)
x
n
−
2
d
y
d
x
=
2
+
6
x
+
(
n
−
1
)
(
n
−
2
)
x
n
−
3
If
f
(
x
)
=
s
i
n
x
, find
d
y
d
x
.
Report Question
0%
c
o
s
x
0%
−
c
o
s
x
0%
c
o
t
x
0%
−
c
o
t
2
x
Explanation
y
=
sin
x
⇒
d
y
d
x
=
cos
x
x
1
2
+
1
=
t
differentiate w.r.t. x
Report Question
0%
d
t
d
x
=
1
2
√
x
0%
d
t
d
x
=
1
4
√
x
0%
d
t
d
x
=
1
8
√
x
0%
d
t
d
x
=
1
16
√
x
Explanation
x
1
2
+
1
=
t
d
t
d
x
=
1
2
(
x
)
1
2
−
1
+
0
1
2
(
x
)
−
1
2
1
2
x
1
2
d
t
d
x
=
1
2
√
x
Differentiate:
x
100
+
sin
x
−
1
Report Question
0%
100
x
99
−
cos
x
0%
100
x
99
+
cos
x
0%
x
99
+
cos
x
0%
100
x
99
+
sin
x
Explanation
d
d
x
(
x
100
+
sin
x
−
1
)
=
d
d
x
(
x
100
)
+
d
d
x
(
sin
x
)
−
d
d
x
(
1
)
=
100
x
100
−
1
+
cos
x
−
0
=
100
x
99
+
cos
x
lim
x
→
0
sin
7
x
sin
3
x
equals
Report Question
0%
7
3
0%
10
3
0%
14
3
0%
1
3
Explanation
We have,
lim
x
→
0
sin
7
x
sin
3
x
lim
x
→
0
sin
7
x
sin
3
x
lim
x
→
0
sin
7
x
7
x
×
7
x
sin
3
x
3
x
×
3
x
lim
x
→
0
sin
7
x
7
x
×
7
sin
3
x
3
x
×
3
=
1
×
7
1
×
3
=
7
3
Hence, this is the answer.
Consider the differential equation
d
y
d
x
=
cos
x
Then we observe that
Report Question
0%
y
=
sin
x
0%
y
=
sin
x
+
2
0%
y
=
sin
x
−
1
2
0%
y
=
sin
x
+
c
Explanation
d
y
=
cos
x
d
x
∫
d
y
=
∫
cos
x
d
x
y
=
sin
x
+
C
We must add constant "C" as its family of curves.
Which of the following statement is not correct
Report Question
0%
lim
x
→
c
[
f
(
x
)
+
g
(
x
)
]
=
lim
x
→
c
f
(
x
)
+
lim
x
→
c
g
(
x
)
0%
lim
x
→
c
[
f
(
x
)
−
g
(
x
)
]
=
lim
x
→
c
f
(
x
)
−
lim
x
→
c
g
(
x
)
0%
lim
x
→
c
[
f
(
x
)
.
g
(
x
)
]
=
lim
x
→
c
f
(
x
)
.
lim
x
→
c
g
(
x
)
0%
lim
x
→
c
f
(
x
)
g
(
x
)
=
lim
x
→
c
f
(
x
)
lim
x
→
c
g
(
x
)
Explanation
All the result other than D are correct.
The last result will hold only when
g
(
x
)
≠
0
and
lim
x
→
c
g
(
x
)
≠
0
for
x
belonging to a neighbourhood of
c
.
A, B, C are general results which are always true.
Evaluate the following limit :
l
i
m
x
→
0
1
−
cos
2
x
x
2
Report Question
0%
0
0%
1
0%
2
0%
none of these
Explanation
l
i
m
x
→
0
1
−
cos
2
x
x
2
=
l
i
m
x
→
0
2
sin
2
x
x
2
=
2
l
i
m
x
→
0
(
sin
x
x
×
sin
x
x
)
=
2
l
i
m
x
→
0
sin
x
x
×
l
i
m
x
→
0
sin
x
x
=
2
(
1
)
(
1
)
=
2
Evaluate
lim
n
→
∞
1
+
2
+
3
+
.
.
.
+
n
n
2
Report Question
0%
1
2
0%
1
0%
3
2
0%
1
2
2
Explanation
lim
n
→
∞
1
+
2
+
3
+
.
.
.
+
n
n
2
=
lim
n
→
∞
1
n
2
×
n
(
n
+
1
)
2
=
lim
n
→
∞
1
2
(
1
+
1
n
)
=
1
2
if
y
=
5
x
2
+
8
x
find
d
y
d
x
Report Question
0%
10
x
+
8
0%
5
x
+
8
0%
10
x
2
+
8
x
0%
none of these
Explanation
The Equation is
y
=
5
x
2
+
8
x
d
y
d
x
=
d
d
x
(
5
x
2
+
8
x
)
d
y
d
x
=
10
x
+
8
If
y
=
e
sin
√
x
then
d
y
d
x
=
?
Report Question
0%
e
sin
√
x
.
cos
√
x
0%
e
sin
√
x
cos
√
x
2
√
x
0%
e
sin
√
x
2
√
x
0%
n
o
n
e
o
f
t
h
e
s
e
If
y
=
x
2
sin
1
x
then
d
y
d
x
=
?
Report Question
0%
x
sin
1
x
−
cos
1
x
0%
−
cos
1
x
+
2
x
sin
1
x
0%
−
x
sin
1
x
+
cos
1
x
0%
n
o
n
e
o
f
t
h
e
s
e
If
(
x
+
y
)
=
sin
(
x
+
y
)
then
d
y
d
x
=
?
Report Question
0%
−
1
0%
1
0%
1
−
cos
(
x
+
y
)
cos
2
(
x
+
y
)
0%
n
o
n
e
o
f
t
h
e
s
e
If
x
=
a
cos
2
θ
,
y
=
b
sin
2
θ
then
d
y
d
x
=
?
Report Question
0%
−
a
b
0%
a
b
cot
θ
0%
−
b
a
0%
n
o
n
e
o
f
t
h
e
s
e
If
y
=
cos
2
x
3
then
d
y
d
x
=
?
Report Question
0%
−
3
x
2
sin
(
2
x
3
)
0%
−
3
x
2
sin
2
x
3
0%
−
3
x
2
cos
2
(
2
x
3
)
0%
n
o
n
e
o
f
t
h
e
s
e
lf
lim
x
→
0
(
cos
4
x
+
a
cos
2
x
+
b
x
4
)
is finite then the value of
a
,
b
respectively are
Report Question
0%
5
−
4
0%
−
5
,
−
4
0%
−
4
,
3
0%
4
,
5
Explanation
lim
x
→
0
(
cos
4
x
+
a
cos
2
x
+
b
x
4
)
As
x
→
0
, denominator tends to 0, so the numerator also tends to 0.
⇒
lim
x
→
0
cos
4
x
+
a
cos
2
x
+
b
=
0
at
x
=
0
⇒
cos
4
x
=
1
,
cos
2
x
=
1
⇒
1
+
a
+
b
=
0
⇒
a
+
b
=
−
1
Now, put
a
=
−
4
⇒
b
=
3
Option C satisfies above equation.
lim
x
→
1
(
1
−
x
)
tan
(
π
x
2
)
=
Report Question
0%
π
0%
2
π
0%
π
2
0%
2
π
Explanation
lim
x
→
1
(
1
−
x
)
tan
(
π
x
2
)
=
lim
x
→
1
1
−
x
cot
(
π
x
2
)
It is of the form
0
0
, so applying L-Hospital's rule
=
lim
x
→
1
−
1
−
π
2
csc
2
(
π
x
2
)
=
2
π
lim
x
→
0
1
−
cos
3
x
x
sin
2
x
=
Report Question
0%
1
2
0%
3
2
0%
3
4
0%
1
4
Explanation
lim
x
→
0
1
−
cos
3
x
x
sin
2
x
=
lim
x
→
0
(
1
−
cos
x
)
(
1
+
cos
x
+
cos
2
x
)
x
sin
2
x
=
lim
x
→
0
2
sin
2
x
2
(
1
+
cos
x
+
cos
2
x
)
4
x
cos
x
sin
x
2
cos
x
2
=
lim
x
→
0
sin
x
2
(
1
+
cos
x
+
cos
2
x
)
4
×
x
2
cos
x
2
×
cos
x
=
3
4
...... As
{
lim
x
2
→
0
sin
x
2
x
2
=
0
}
lim
x
→
0
1
−
cos
x
x
log
(
1
+
x
)
=
Report Question
0%
1
0%
0
0%
−
1
0%
1
2
Explanation
lim
x
→
0
1
−
cos
x
x
log
(
1
+
x
)
lim
x
→
0
2
sin
2
x
2
x
log
(
1
+
x
)
=
lim
x
→
0
2
sin
2
x
2
(
x
2
)
2
×
1
4
1
x
log
(
1
+
x
)
=
lim
x
→
0
1
2
log
(
1
+
x
)
x
=
1
2
Solve :
lim
x
→
0
sin
x
sin
(
π
3
+
x
)
sin
(
π
3
−
x
)
x
Report Question
0%
3
4
0%
1
4
0%
4
3
0%
0
Explanation
Solve :
lim
x
→
0
sin
x
sin
(
π
3
+
x
)
sin
(
π
3
−
x
)
x
=
lim
x
→
0
sin
x
x
×
lim
x
→
0
sin
(
π
3
+
x
)
×
lim
x
→
0
sin
(
π
3
−
x
)
=
1
×
sin
π
3
×
sin
π
3
=
1
×
√
3
2
×
√
3
2
=
3
4
lim
x
→
0
(
1
−
cos
2
x
)
sin
5
x
x
2
sin
3
x
=
Report Question
0%
10
3
0%
3
10
0%
6
5
0%
5
6
Explanation
Using,
1
−
c
o
s
2
x
=
2
s
i
n
2
x
,
The expression transforms to,
l
i
m
x
→
0
2
s
i
n
2
x
s
i
n
5
x
x
2
s
i
n
3
x
Rewriting the expression in a different form,
l
i
m
x
→
0
2
s
i
n
2
x
x
2
×
s
i
n
5
x
5
x
×
3
x
s
i
n
3
x
×
5
3
Therefore, the limit to the expression is
10
3
Hence, option 'A' is correct.
The value of
lim
α
→
β
[
sin
2
α
−
sin
2
β
α
2
−
β
2
]
is:
Report Question
0%
0
0%
1
0%
sin
β
β
0%
sin
2
β
2
β
Explanation
lim
α
→
β
[
sin
2
α
−
sin
2
β
α
2
−
β
2
]
=
lim
α
→
β
[
sin
(
α
−
β
)
sin
(
α
+
β
)
(
α
−
β
)
(
α
+
β
)
]
=
lim
α
→
β
[
sin
(
α
−
β
)
(
α
−
β
)
]
×
lim
α
→
β
[
sin
(
α
+
β
)
(
α
+
β
)
]
=
lim
α
−
β
→
0
[
sin
(
α
−
β
)
(
α
−
β
)
]
.
(
sin
2
β
2
β
)
.......
[
∵
α
→
β
⟹
α
−
β
→
0
]
=
1.
sin
2
β
2
β
.....
[
∵
lim
x
→
0
sin
x
x
=
1
]
=
sin
2
β
2
β
Evaluate:
lim
x
→
0
sec
4
x
−
sec
2
x
sec
3
x
−
sec
x
Report Question
0%
3
2
0%
2
3
0%
1
3
0%
3
4
Explanation
Given,
lim
x
→
0
sec
4
x
−
sec
2
x
sec
3
x
−
sec
x
sec
x
=
1
cos
x
=
lim
x
→
0
1
cos
4
x
−
1
cos
2
x
1
cos
3
x
−
1
cos
x
=
lim
x
→
0
cos
2
x
−
cos
4
x
cos
x
−
cos
3
x
cos
3
x
cos
x
cos
4
x
cos
2
x
=
lim
x
→
0
−
2
sin
3
x
sin
(
−
x
)
−
2
sin
(
2
x
)
sin
(
−
x
)
cos
3
x
cos
x
cos
4
x
cos
2
x
=
lim
x
→
0
sin
3
x
3
x
×
3
x
sin
2
x
2
x
×
2
x
cos
3
x
cos
x
cos
4
x
cos
2
x
as
cos
0
=
1
and
lim
x
→
0
sin
x
x
=
1
=
3
x
2
x
=
3
2
lim
x
→
0
e
x
−
e
sin
x
2
(
x
−
sin
x
)
=
Report Question
0%
−
1
2
0%
1
2
0%
1
0%
3
2
Explanation
We simplify the given expression as,
lim
x
→
0
e
s
i
n
x
(
e
x
−
s
i
n
x
−
1
)
2
(
x
−
s
i
n
x
)
Let
x
−
s
i
n
x
=
y
As
x
→
0
so does y
→
0
Hence, the question transforms into
(
lim
x
→
0
e
s
i
n
x
2
)
×
(
lim
y
→
0
e
y
−
1
y
)
=
1
2
×
1
=
1
2
lim
x
→
π
2
c
o
s
e
c
x
−
cot
x
x
=
Report Question
0%
1
0%
2
π
0%
1
2
0%
1
5
Explanation
lim
x
→
π
2
csc
x
−
cot
x
x
=
lim
x
→
π
2
1
−
cos
x
x
sin
x
=
2
π
lim
x
→
π
4
sec
x
.
tan
(
4
x
−
π
)
sin
(
4
x
−
π
)
=
Report Question
0%
√
2
0%
1
√
2
0%
−
√
2
0%
−
1
√
2
Explanation
lim
x
→
π
4
sec
x
.
tan
(
4
x
−
π
)
sin
(
4
x
−
π
)
=
lim
x
→
π
4
sec
x
.
tan
(
4
x
−
π
)
(
4
x
−
π
)
sin
(
4
x
−
π
)
(
4
x
−
π
)
=
√
2
lim
x
→
0
x
tan
2
x
−
2
x
tan
x
(
1
−
cos
2
x
)
2
=
Report Question
0%
2
0%
−
2
0%
1
2
0%
−
1
2
Explanation
lim
x
→
0
x
tan
2
x
−
2
x
tan
x
(
1
−
cos
2
x
)
2
=
lim
x
→
0
x
2
tan
x
1
−
tan
2
x
−
2
x
tan
x
(
1
−
1
−
tan
2
x
1
+
tan
2
x
)
2
=
lim
x
→
0
2
x
tan
3
x
4
tan
4
x
=
lim
x
→
0
2
x
4
tan
x
=
1
2
lim
x
→
π
6
3
sin
x
−
√
3
cos
x
6
x
−
π
=
Report Question
0%
√
3
0%
1
√
3
0%
−
√
3
0%
−
1
√
3
Explanation
lim
x
→
π
6
3
sin
x
−
√
3
cos
x
6
x
−
π
=
2
√
3
lim
x
→
π
6
√
3
2
sin
x
−
1
2
cos
x
6
x
−
π
=
2
√
3
6
lim
x
→
π
6
cos
π
6
sin
x
−
sin
π
6
cos
x
x
−
π
6
=
1
√
3
lim
x
→
π
6
sin
(
x
−
π
6
)
(
x
−
π
6
)
=
1
√
3
lim
x
→
0
t
a
n
x
0
x
=
Report Question
0%
0
0%
1
0%
π
180
0%
π
Explanation
lim
x
→
0
t
a
n
x
0
x
=
π
180
lim
x
→
0
tan
(
π
180
x
)
(
π
180
)
x
=
π
180
lim
x
→
0
3
sin
x
−
sin
3
x
x
3
=
Report Question
0%
0
0%
1
0%
(
π
180
)
3
0%
4.
(
π
180
)
3
Explanation
lim
x
→
0
3
sin
x
−
sin
3
x
x
3
=
lim
x
→
0
4
sin
3
x
x
3
=
lim
x
→
0
4
sin
3
(
π
180
x
)
x
3
=
(
π
180
)
3
lim
x
→
0
4
sin
3
(
π
180
x
)
x
3
(
π
180
)
3
=
4
(
π
180
)
3
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page