CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 2 - MCQExams.com

Find dydxdydx of the following y=1+2x+3x2+(n1)xn2y=1+2x+3x2+(n1)xn2

  • x+2x2+6x3+(n1)(n2)xn3x+2x2+6x3+(n1)(n2)xn3
  • 2+6x+(n1)xn22+6x+(n1)xn2
  • 2+6x+(n1)(n2)xn32+6x+(n1)(n2)xn3
  • None
If f(x)=sinxf(x)=sinx, find dydxdydx.
  • cosxcosx
  • cosxcosx
  • cotxcotx
  • cot2xcot2x
x12+1=tx12+1=t
differentiate w.r.t. x
  • dtdx=12xdtdx=12x
  • dtdx=14xdtdx=14x
  • dtdx=18xdtdx=18x
  • dtdx=116xdtdx=116x
Differentiate: x100+sinx1x100+sinx1
  • 100x99cosx100x99cosx
  • 100x99+cosx100x99+cosx
  • x99+cosxx99+cosx
  • 100x99+sinx100x99+sinx
limx 0sin7xsin3xlimx 0sin7xsin3x equals
  • 7373
  • 103103
  • 143143
  • 1313
Consider the differential equation dydx=cosxdydx=cosx Then we observe that 
  • y=sinxy=sinx
  • y=sinx+2y=sinx+2
  • y=sinx12y=sinx12
  • y=sinx+cy=sinx+c
Which of the following statement is not correct
  • limxc[f(x)+g(x)]=limxcf(x)+limxcg(x)limxc[f(x)+g(x)]=limxcf(x)+limxcg(x)
  • limxc[f(x)g(x)]=limxcf(x)limxcg(x)limxc[f(x)g(x)]=limxcf(x)limxcg(x)
  • limxc[f(x).g(x)]=limxcf(x).limxcg(x)limxc[f(x).g(x)]=limxcf(x).limxcg(x)
  • limxcf(x)g(x)=limxcf(x)limxcg(x)limxcf(x)g(x)=limxcf(x)limxcg(x)
Evaluate the following limit :
limx01cos2xx2limx01cos2xx2
  • 00
  • 11
  • 22
  • none of these
Evaluate limn1+2+3+...+nn2limn1+2+3+...+nn2
  • 1212
  • 11
  • 3232
  • 122122
if y=5x2+8xy=5x2+8x find dydxdydx
  • 10x+810x+8
  • 5x+85x+8
  • 10x2+8x10x2+8x
  • none of these
If y=esinxy=esinx then dydx=?dydx=?
  • esinx.cosxesinx.cosx
  • esinxcosx2xesinxcosx2x
  • esinx2xesinx2x
  • none of thesenone of these
If y=x2sin1xy=x2sin1x then dydx=?dydx=?
  • xsin1xcos1xxsin1xcos1x
  • cos1x+2xsin1xcos1x+2xsin1x
  • xsin1x+cos1xxsin1x+cos1x
  • none of thesenone of these
If (x+y)=sin(x+y)(x+y)=sin(x+y) then dydx=?dydx=?
  • 11
  • 11
  • 1cos(x+y)cos2(x+y)1cos(x+y)cos2(x+y)
  • none of thesenone of these
If x=acos2θ,y=bsin2θx=acos2θ,y=bsin2θ then dydx=?dydx=?
  • abab
  • abcotθabcotθ
  • baba
  • none of thesenone of these
If y=cos2x3y=cos2x3 then dydx=?dydx=?
  • 3x2sin(2x3)3x2sin(2x3)
  • 3x2sin2x33x2sin2x3
  • 3x2cos2(2x3)3x2cos2(2x3)
  • none of thesenone of these
lf limx0(cos4x+acos2x+bx4)limx0(cos4x+acos2x+bx4) is finite then the value of a,ba,b respectively are
  • 5454
  • 5, 45, 4
  • 4, 34, 3
  • 4, 54, 5

limx1(1x)tan(πx2)=limx1(1x)tan(πx2)=
  • ππ
  • 2π2π
  • π2π2
  • 2π2π

limx01cos3xxsin2xlimx01cos3xxsin2x=
  • 1212
  • 3232
  • 3434
  • 1414
limx01cosxxlog(1+x)=limx01cosxxlog(1+x)=
  • 11
  • 00
  • 11
  • 1212
Solve : limx0sinxsin(π3+x)sin(π3x)xlimx0sinxsin(π3+x)sin(π3x)x
  • 3434
  • 1414
  • 4343
  • 00
limx0(1cos2x)sin5xx2sin3x=limx0(1cos2x)sin5xx2sin3x=
  • 103103
  • 310310
  • 6565
  • 5656
The value of limαβ[sin2αsin2βα2β2]limαβ[sin2αsin2βα2β2] is:
  • 00
  • 11
  • sinββsinββ
  • sin2β2βsin2β2β
Evaluate: limx0sec4xsec2xsec3xsecxlimx0sec4xsec2xsec3xsecx
  • 3232
  • 2323
  • 1313
  • 3434
limx0exesinx2(xsinx)=limx0exesinx2(xsinx)=
  • 1212
  • 1212
  • 11
  • 3232

limxπ2cosecxcotxxlimxπ2cosecxcotxx=
  • 11
  • 2π2π
  • 1212
  • 1515
limxπ4secx.tan(4xπ)sin(4xπ)limxπ4secx.tan(4xπ)sin(4xπ)=
  • 22
  • 1212
  • 22
  • 1212

limx0xtan2x2xtanx(1cos2x)2limx0xtan2x2xtanx(1cos2x)2=
  • 22
  • 22
  • 1212
  • 1212
limxπ63sinx3cosx6xπ=limxπ63sinx3cosx6xπ=
  • 33
  • 1313
  • 33
  • 1313
limx0tanx0x=limx0tanx0x=
  • 0
  • 1
  • π180π180
  • ππ

limx03sinxsin3xx3limx03sinxsin3xx3=
  • 00
  • 11
  • (π180)3(π180)3
  • 4.(π180)34.(π180)3
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers