Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 2 - MCQExams.com

Find dydx of the following y=1+2x+3x2+(n1)xn2

  • x+2x2+6x3+(n1)(n2)xn3
  • 2+6x+(n1)xn2
  • 2+6x+(n1)(n2)xn3
  • None
If f(x)=sinx, find dydx.
  • cosx
  • cosx
  • cotx
  • cot2x
x12+1=t
differentiate w.r.t. x
  • dtdx=12x
  • dtdx=14x
  • dtdx=18x
  • dtdx=116x
Differentiate: x100+sinx1
  • 100x99cosx
  • 100x99+cosx
  • x99+cosx
  • 100x99+sinx
limx 0sin7xsin3x equals
  • 73
  • 103
  • 143
  • 13
Consider the differential equation dydx=cosx Then we observe that 
  • y=sinx
  • y=sinx+2
  • y=sinx12
  • y=sinx+c
Which of the following statement is not correct
  • limxc[f(x)+g(x)]=limxcf(x)+limxcg(x)
  • limxc[f(x)g(x)]=limxcf(x)limxcg(x)
  • limxc[f(x).g(x)]=limxcf(x).limxcg(x)
  • limxcf(x)g(x)=limxcf(x)limxcg(x)
Evaluate the following limit :
limx01cos2xx2
  • 0
  • 1
  • 2
  • none of these
Evaluate limn1+2+3+...+nn2
  • 12
  • 1
  • 32
  • 122
if y=5x2+8x find dydx
  • 10x+8
  • 5x+8
  • 10x2+8x
  • none of these
If y=esinx then dydx=?
  • esinx.cosx
  • esinxcosx2x
  • esinx2x
  • none of these
If y=x2sin1x then dydx=?
  • xsin1xcos1x
  • cos1x+2xsin1x
  • xsin1x+cos1x
  • none of these
If (x+y)=sin(x+y) then dydx=?
  • 1
  • 1
  • 1cos(x+y)cos2(x+y)
  • none of these
If x=acos2θ,y=bsin2θ then dydx=?
  • ab
  • abcotθ
  • ba
  • none of these
If y=cos2x3 then dydx=?
  • 3x2sin(2x3)
  • 3x2sin2x3
  • 3x2cos2(2x3)
  • none of these
lf limx0(cos4x+acos2x+bx4) is finite then the value of a,b respectively are
  • 54
  • 5, 4
  • 4, 3
  • 4, 5

limx1(1x)tan(πx2)=
  • π
  • 2π
  • π2
  • 2π

limx01cos3xxsin2x=
  • 12
  • 32
  • 34
  • 14
limx01cosxxlog(1+x)=
  • 1
  • 0
  • 1
  • 12
Solve : limx0sinxsin(π3+x)sin(π3x)x
  • 34
  • 14
  • 43
  • 0
limx0(1cos2x)sin5xx2sin3x=
  • 103
  • 310
  • 65
  • 56
The value of limαβ[sin2αsin2βα2β2] is:
  • 0
  • 1
  • sinββ
  • sin2β2β
Evaluate: limx0sec4xsec2xsec3xsecx
  • 32
  • 23
  • 13
  • 34
limx0exesinx2(xsinx)=
  • 12
  • 12
  • 1
  • 32

limxπ2cosecxcotxx=
  • 1
  • 2π
  • 12
  • 15
limxπ4secx.tan(4xπ)sin(4xπ)=
  • 2
  • 12
  • 2
  • 12

limx0xtan2x2xtanx(1cos2x)2=
  • 2
  • 2
  • 12
  • 12
limxπ63sinx3cosx6xπ=
  • 3
  • 13
  • 3
  • 13
limx0tanx0x=
  • 0
  • 1
  • π180
  • π

limx03sinxsin3xx3=
  • 0
  • 1
  • (π180)3
  • 4.(π180)3
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers