Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 3 - MCQExams.com

Solve:
limx03tanxtan3x2x3
  • 14
  • 34
  • 4
  • 4
limx0(sinxxx)(sin1x) is:
  • does not exist
  • is equal to 0
  • is equal to 1
  • exists and different from 0 and 1

limxπ4cosxsinx(π4x)(cosx+sinx)=
  • 2
  • 1
  • 0
  • 3

limxπ2(π2x)secxcosecx=
  • 1
  • 0
  • -1
  • 1π

limxπ21sinx(π2x)2=
  • 13
  • 14
  • 16
  • 18
limxx+sinxx+cosx=
  • 1
  • 1
  • 13
  • 0

 lf f(x)=xsin2xx+cosx,then limxf(x)=
  • 12
  • 1
  • 0
  • 1
lf f(x)=0 has a repeated root α, then another equation having α as root, is 
  • f(2x)=0
  • f(3x)=0
  • f(x)=0
  • f(x)=0

limx(sinx+1sinx)=
  • 2
  • -2
  • 0
  • None of these
\displaystyle \lim_{x\rightarrow \infty }x\displaystyle \cos\left(\frac{\pi}{8x}\right)\sin\left(\frac{\pi}{8x}\right)=
  • \displaystyle \pi
  • \displaystyle \frac{\pi}{2}
  • \dfrac{\pi}{8}
  • \displaystyle \frac{\pi}{4}

 \displaystyle \lim_{x\rightarrow\infty}\frac{\sin^{4}x-\sin^{2}x+1}{\cos^{4}x-\cos^{2}x+1} is equal to
  • 0
  • 1
  • \dfrac{1}{3}
  • \dfrac{1}{2}

\displaystyle \lim_{x\rightarrow \displaystyle \frac{\pi }{2}}\displaystyle \frac{1-\sin\theta}{\cos\theta\left(\dfrac{\pi}{2}-{\theta}\right)}=
  • 1
  • -1
  • -\displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{2}

\displaystyle \lim_{x\rightarrow \infty }2^{-x}\sin(2^{x})
  • 1
  • 0
  • 2
  • does not exist
Evaluate: \displaystyle \underset{x\rightarrow 0}{\lim}\ \ \frac{\sin3x^{2}}{\cos(2x^{2}-x)}
  • 0
  • -1
  • 4
  • -6
\displaystyle \lim_{x\rightarrow \infty }\frac{2x+7\sin x}{4x+3\cos x}=
  • 1
  • -1
  • \dfrac{1}{2}
  • -\dfrac{1}{2}

\displaystyle Lt_{x\rightarrow 0^+}(sinx)^{\tan x}=
  • {e}
  • e^{2}
  • -1
  • 1
The value of \displaystyle \lim _{ x\rightarrow 0 }{ \frac { \sin { \left( \pi \cos ^{ 2 }{ x }  \right)  }  }{ { x }^{ 2 } }  } is
  • -\pi
  • \displaystyle \frac { \pi  }{ 2 }
  • \pi
  • \displaystyle \frac { 3\pi  }{ 2 }
Lt_{x \rightarrow 0}\dfrac{\sin 2x+a\sin x}{x^{3}} exists and finite then \mathrm{a}=
  • 2
  • -2
  • \displaystyle \frac{2}{3}
  • \displaystyle \frac{-2}{3}

\displaystyle \lim_{\mathrm{x}\rightarrow \pi }(1- 4 \tan \mathrm{x} )^{\mathrm{c}\mathrm{o}\mathrm{t}\mathrm{x}}=
  • \mathrm{e}
  • \mathrm{e}^{4}
  • \mathrm{e}^{-1}
  • \mathrm{e}^{-4}
lf f(x)=\displaystyle \frac{x}{\sqrt{1-x^{2}}},g(x)=\frac{x}{\sqrt{1+x^{2}}}, then \displaystyle \frac{d}{dx}(fog (x))=
  • 1
  • 0
  • -1
  • 2
The integer n for which \displaystyle \lim_{x\rightarrow 0}\frac{(\cos x-1)(\cos x-e^{x})}{x^{n}} is finite non zero number is
  • 1
  • 2
  • 3
  • 4
The right-hand limit of the function \sec{x} at \displaystyle x=-\frac { \pi  }{ 2 } is
  • -\infty
  • -1
  • 0
  • \infty
\displaystyle \lim_{x\rightarrow 1}(2-x)^{\displaystyle \tan( \frac{\pi x}{2})}=
  • e^{\displaystyle \frac{1}{\pi}}
  • e^{\displaystyle \frac{2}{\pi}}
  • -e^{\displaystyle \frac{2}{\pi}}
  • \mathrm{e}
\displaystyle \lim_{x\rightarrow 0}\frac{1}{x}\cos ^{ -1 }{ \left( \frac { 1-x^{ 2 } }{ 1+x^{ 2 } }  \right)  } =
  • 0
  • 1
  • 2
  • does not exist
If f(x)=(ax+b)\cos x + (cx+d)\sin x and f^{'}(x)=x \cos x, for all values of x\in R, then a,b,c,d are given by
  • a = b = c = d
  • 0, 1, -1, 0
  • 1, 0, -1, 0
  • 0, 1, 1, 0
If \displaystyle \lim_{x\to0}{\displaystyle \frac{x^n - \sin^nx}{x - \sin^nx}} is non-zero finite, then n must be equal
  • 4
  • 1
  • 2
  • 3
Assertion (A): \mathrm{f}(\mathrm{x})=\sin(\pi[x]) is differentiable every where [\ ] is greatest integer function

Reason (R): lf \mathrm{x}=\mathrm{n}\pi\Rightarrow  \sin x =0\ \forall \ \mathrm{n}\in \mathrm{Z} then
  • Both (A) and (R) are true and R is correct explanation for A
  • Both (A) and (R) are true and R is not correct explanation for A
  • (A) is true (R) is false
  • (A) is false (R) is true
\displaystyle \lim_{x\to1}{\displaystyle \frac{1-x^2}{\sin 2\pi x}} is equal to
  • \displaystyle \frac{1}{2\pi}
  • \displaystyle \frac{-1}{\pi}
  • \displaystyle \frac{-2}{\pi}
  • None of these
\displaystyle\lim_{x \rightarrow \infty}(1^x + 2^x + 3^x+.........+n^x)^{1/x} is
  • \ln (n!)
  • n
  • n!
  • 0
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers