Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 3 - MCQExams.com

Solve:
limx03tanxtan3x2x3
  • 14
  • 34
  • 4
  • 4
limx0(sinxxx)(sin1x) is:
  • does not exist
  • is equal to 0
  • is equal to 1
  • exists and different from 0 and 1

limxπ4cosxsinx(π4x)(cosx+sinx)=
  • 2
  • 1
  • 0
  • 3

limxπ2(π2x)secxcosecx=
  • 1
  • 0
  • -1
  • 1π

limxπ21sinx(π2x)2=
  • 13
  • 14
  • 16
  • 18
limxx+sinxx+cosx=
  • 1
  • 1
  • 13
  • 0

 lf f(x)=xsin2xx+cosx,then limxf(x)=
  • 12
  • 1
  • 0
  • 1
lf f(x)=0 has a repeated root α, then another equation having α as root, is 
  • f(2x)=0
  • f(3x)=0
  • f(x)=0
  • f(x)=0

limx(sinx+1sinx)=
  • 2
  • -2
  • 0
  • None of these
limxxcos(π8x)sin(π8x)=
  • π
  • π2
  • π8
  • π4

 limxsin4xsin2x+1cos4xcos2x+1 is equal to
  • 0
  • 1
  • 13
  • 12

limxπ21sinθcosθ(π2θ)=
  • 1
  • 1
  • 12
  • 12

limx2xsin(2x)
  • 1
  • 0
  • 2
  • does not exist
Evaluate: limx0  sin3x2cos(2x2x)
  • 0
  • 1
  • 4
  • 6
limx2x+7sinx4x+3cosx=
  • 1
  • 1
  • 12
  • 12

Ltx0+(sinx)tanx=
  • e
  • e2
  • 1
  • 1
The value of limx0sin(πcos2x)x2 is
  • π
  • π2
  • π
  • 3π2
Ltx0sin2x+asinxx3 exists and finite then a=
  • 2
  • 2
  • 23
  • 23

limxπ(14tanx)cotx=
  • e
  • e4
  • e1
  • e4
lf f(x)=x1x2,g(x)=x1+x2, then ddx(fog(x))=
  • 1
  • 0
  • 1
  • 2
The integer n for which limx0(cosx1)(cosxex)xn is finite non zero number is
  • 1
  • 2
  • 3
  • 4
The right-hand limit of the function secx at x=π2 is
  • 1
  • 0
limx1(2x)tan(πx2)=
  • e1π
  • e2π
  • e2π
  • e
limx01xcos1(1x21+x2)=
  • 0
  • 1
  • 2
  • does not exist
If f(x)=(ax+b)cosx+(cx+d)sinx and f(x)=xcosx, for all values of xR, then a,b,c,d are given by
  • a=b=c=d
  • 0,1,1,0
  • 1,0,1,0
  • 0,1,1,0
If limx0xnsinnxxsinnx is non-zero finite, then n must be equal
  • 4
  • 1
  • 2
  • 3
Assertion (A): f(x)=sin(π[x]) is differentiable every where [ ] is greatest integer function

Reason (R): lf x=nπ sinx =0  nZ then
  • Both (A) and (R) are true and R is correct explanation for A
  • Both (A) and (R) are true and R is not correct explanation for A
  • (A) is true (R) is false
  • (A) is false (R) is true
limx11x2sin2πx is equal to
  • 12π
  • 1π
  • 2π
  • None of these
limx(1x+2x+3x+.........+nx)1/x is
  • ln(n!)
  • n
  • n!
  • 0
  • Both Assertion and Reason are correct and Reason is the correct explanation for Assertion
  • Both Assertion and Reason are correct but Reason is not the correct explanation for Assertion
  • Assertion is correct but Reason is incorrect
  • Assertion is incorrect but Reason is correct
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers