Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 4 - MCQExams.com


lf [x] denotes the greatest integer contained in x, then for 4 <x<5, ddx{[x]}=
  • [x4,5]
  • [x]
  • 0
  • 1
For the function f(x)=x100100+x9999+...........+x22+x+1, f(1)=
  • x100
  • 100
  • 101
  • None of these

lf f(x)={1cosxxx00x=0,  then f(0)=
  • 12
  • 14
  • 34
  • Does not exist
Derivative of which function is f'(x) = x \sin x?
  • x \sin x + \cos x
  • x \cos  x+ \sin x
  • x\sin \left ( \dfrac{\pi}{2}-x \right ) + \cos \left ( \dfrac{\pi}{2}-x \right )
  • x \cos \left ( \dfrac{\pi}{2}-x \right ) + \sin \left ( \dfrac{\pi}{2}-x \right )
If y=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^x, then find \dfrac {dy}{dx}
  • -\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
  • \displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
  • -\displaystyle \frac {3}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
  • -\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\cos^2x+2^x\log 2
If \displaystyle y=5^{3-x^2}+(3-x^2)^5, then \displaystyle \frac{dy}{dx}=
  • -2x\left \{5^{3-x^2}\cdot \log_e5+5(3-x^2)^4\right \}
  • -x\left \{5^{3-x^2}\cdot \log_e5+5(3-x^2)^4\right \}
  • -2x\left \{5^{3-x^2}\cdot \log_e5+(3-x^2)^4\right \}
  • -2x\left \{5^{3-x^2}+5(3-x^2)^4\right \}
If y=\log_{3}x+3 \log_{e} x+2 \tan x, then \displaystyle \frac{dy}{dx}=
  • \displaystyle \frac {1}{x \log_e 3}+\displaystyle \frac {3}{x}+2 \sec^2 x
  • \displaystyle \frac {1}{x \log_e 3}+\displaystyle \frac {3}{x}+ \sec^2 x
  • \displaystyle \frac {1}{\log_e 3}+\displaystyle \frac {3}{x}+2 \sec^2 x
  • \displaystyle \frac {1}{x \log_e 3}-\displaystyle \frac {3}{x}+2 \sec^2 x
If y=x^2+sin^{-1}x+log_ex, find \dfrac {dy}{dx}
  • \displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
  • \displaystyle \frac {dy}{dx}=x+\displaystyle \frac{1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
  • \displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}-\displaystyle \frac {1}{x}
  • \frac {dy}{dx}=2x-\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
If \displaystyle y=e^{x \log a}+e^{a \log x}+e^{a \log a}, then \displaystyle \frac{dy}{dx}=
  • a^x \log a+x^{a-1}
  • a^x \log a+ax
  • a^x \log a+ax^{a-1}
  • a^x \log a+ax^{a}
If y=|\cos x|+|\sin x|, then \displaystyle \dfrac {dy}{dx} at x=\dfrac {2\pi}{3} is
  • \displaystyle \dfrac {1}{2}(\sqrt 3+1)
  • 2(\sqrt 3-1)
  • \displaystyle \dfrac {1}{2}(\sqrt 3-1)
  • none of these
Find the derivative of \sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )
  • 0
  • 1
  • -1
  • \displaystyle \frac{x+1}{x-1}
If y=\log_{10}x+\log_x 10+\log_xx+\log_{10} 10, then \displaystyle \frac{dy}{dx}=
  • \displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}
  • \displaystyle \frac {1}{\log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}
  • \displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x^2(\log_ex)^2}
  • None of these
\displaystyle \lim_{x\to0}\left( x^{-3}\sin{3x} + ax^{-2} + b \right) exists and is equal to 0, then
  • a = -3 and b = \dfrac{9}{2}
  • a = 3 and b = \dfrac{9}{2}
  • a = -3 and b = -\dfrac{9}{2}
  • a = 3 and b = -\dfrac{9}{2}
If y=logx^3+3 sin^{-1}x+kx^2, then find \displaystyle \frac {dy}{dx}
  • 3\cdot \displaystyle \frac {1}{x}+3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)
  • 3\cdot \displaystyle \frac {1}{x^3}+3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)
  • 3\cdot \displaystyle \frac {1}{x}-3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)
  • 3\cdot \displaystyle \frac {1}{x}+3\cdot \frac {1}{\sqrt {1-x^2}}+2x
The value of \displaystyle\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}} for (a>1) is equal to?
  • 1
  • 0
  • \displaystyle\frac{\pi}{2}
  • Does not exist
The value of 
\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 \sin^2 x + \sin  x-1}{2 \sin^2 x - 3  \sin  x + 1}
  • 3
  • -3
  • 6
  • 0
If y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right), then \displaystyle\frac{dy}{dx} equals
  • 1
  • 0
  • \displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}
  • \displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}
If 2^x+2^y=2^{x+y}, then \displaystyle \frac {dy}{dx} has the value equal to
  • \displaystyle -\frac {2^y}{2^x}
  • \displaystyle \frac {1}{1-2^x}
  • \displaystyle 1-2^y
  • \displaystyle \frac {2^x(1-2^y)}{2^y(2^x-1)}
If f'(x)=\sin x+\sin 4x\cdot \cos x, then f'\left (2x^2+\displaystyle \frac {\pi}{2}\right ) is
  • 4x\left \{\cos(2x^2)-sin 8x^2\cdot \sin 2x^2\right \}
  • 4x\left \{\cos(2x^2)+\sin 8x^2\cdot \sin 2x^2\right \}
  • \left \{\cos (2x^2)-\sin 8x\cdot \sin 2x^2\right \}
  • none of the above
The solution set of {f}'(x)>{g}'(x) where f(x)=\displaystyle \frac{1}{2}(5^{2x+1}) & g(x)= 5^x+4x(\ln 5) is 
  • x>1
  • 0< x< 1
  • x \leq 0
  • x>0
f:R\rightarrow R and \displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}, then f(x) is
  • one-one ito
  • many-one onto
  • one-one onto
  • many-one into
Suppose the function f(x)-f(2x) has the derivative 5 at x=1 and derivative 7 at x=2.The derivative  of the function f(x)-f(4x) at x=1, has the value equal to 
  • 19
  • 9
  • 17
  • 14
Which one of the following statements is true?
  • If \displaystyle\lim_{x\rightarrow c}{f(x).g(x)} and \displaystyle\lim_{x\rightarrow c}{f(x)} exist, then \displaystyle\lim_{x\rightarrow c}{g(x)} exists.
  • If \displaystyle\lim_{x\rightarrow c}{f(x).g(x)} exists, then \displaystyle\lim_{x\rightarrow c}{f(x)} and \displaystyle\lim_{x\rightarrow c}{g(x)} exist.
  • If \displaystyle\lim_{x\rightarrow c}{f(x)+g(x)} and \displaystyle\lim_{x\rightarrow c}{f(x)} exist, then \displaystyle\lim_{x\rightarrow c}{g(x)} also exists.
  • If \displaystyle\lim_{x\rightarrow c}{f(x)+g(x)} exists, then \displaystyle\lim_{x\rightarrow c}{f(x)} and \displaystyle\lim_{x\rightarrow c}{g(x)} also exist.
If \displaystyle y=\frac { x }{ a+\displaystyle\frac { x }{ b+\displaystyle\frac { x }{ a+\displaystyle\frac { x }{ b+.....\infty  }  }  }  } , then \cfrac{dy}{dx} =

  • \displaystyle\frac{a}{ab+2ay}
  • \displaystyle\frac{b}{ab+2by}
  • \displaystyle\frac{a}{ab+2by}
  • \displaystyle\frac{b}{ab+2ay}
Given : f(x)=4x^3-6x^2\cos2a+3x \sin 2a.\sin 6a+\sqrt{\ln (2a-a^2)} then 
  • f(x) is not defined at x=\displaystyle \frac{1}{2}
  • {f}'(\displaystyle \frac{1}{2})<0
  • f'(x) is not defined at x=\displaystyle \frac{1}{2}
  • {f}'(\displaystyle \frac{1}{2})>0
Let \displaystyle f\left( \frac { { x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ n } }{ n }  \right) =\frac { f\left( { x }_{ 1 } \right) +f\left( { x }_{ 2 } \right) +...+f\left( { x }_{ n } \right)  }{ n } where all { x }_{ i }\in R are independent to each other and n\in N. if f(x) is differentiable and f'\left( 0 \right) =a,f\left( 0 \right) =b and f'\left( x \right) is equal to
  • a
  • 0
  • b
  • None of these
If  5f(x)+3f\left ( \displaystyle \frac{1}{x} \right )=x+2 and y=xf(x) then \left (\displaystyle  \frac{dy}{dx} \right )_{x=1} is equal to ?
  • 14
  • \displaystyle \frac{7}{8}
  • 1
  • none of these
If \displaystyle  f\left( x \right) =\sqrt { 1+\sqrt { x }  } , x > 0, then \displaystyle f\left ( x \right )\cdot f'\left ( x \right ) is equal to
  • \displaystyle \frac{1}{2\sqrt{x}}
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{4\sqrt{x}}
  • \displaystyle \frac{2\sqrt{x}+1}{4\sqrt{x}}
y=\sqrt{\sin x+\sqrt{\sin x +\sqrt{\sin x+-\infty }}} then \displaystyle \frac{dy}{dx} equals:(\sin x> 0)
  • \displaystyle \frac{\cos x}{2y-1}
  • \displaystyle \frac{y}{2\tan x+y\sec x}
  • \displaystyle \frac{1}{\sqrt{1+4\sin x}}
  • \displaystyle \frac{2\cos x}{\sin x+2y}
f\left( x \right)=\begin{cases} \sin { x } \qquad ;\qquad x\neq n\pi ,n=0,\pm 1,\pm 2,\pm 3..... \\ 2\qquad \qquad ;\qquad otherwise \end{cases} and g\left( x \right) =\begin{cases} { x }^{ 2 }+1\qquad ;\qquad x\neq 0 \\ 4\qquad \qquad ;\qquad x=0 \end{cases}. 
Then \lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)\right)} is
  • 1
  • 4
  • 5
  • non-existent
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers