Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 4 - MCQExams.com


lf [x] denotes the greatest integer contained in x, then for 4 <x<5, ddx{[x]}=
  • [x4,5]
  • [x]
  • 0
  • 1
For the function f(x)=x100100+x9999+...........+x22+x+1, f(1)=
  • x100
  • 100
  • 101
  • None of these

lf f(x)={1cosxxx00x=0,  then f(0)=
  • 12
  • 14
  • 34
  • Does not exist
Derivative of which function is f(x)=xsinx?
  • xsinx+cosx
  • xcosx+sinx
  • xsin(π2x)+cos(π2x)
  • xcos(π2x)+sin(π2x)
If y=x12+log5x+sinxcosx+2x, then find dydx
  • 12x3/2+1xloge5+sec2x+2xlog2
  • 12x3/2+1xloge5+sec2x+2xlog2
  • 32x3/2+1xloge5+sec2x+2xlog2
  • 12x3/2+1xloge5+cos2x+2xlog2
If y=53x2+(3x2)5, then dydx=
  • 2x{53x2loge5+5(3x2)4}
  • x{53x2loge5+5(3x2)4}
  • 2x{53x2loge5+(3x2)4}
  • 2x{53x2+5(3x2)4}
If y=log3x+3logex+2tanx, then dydx=
  • 1xloge3+3x+2sec2x
  • 1xloge3+3x+sec2x
  • 1loge3+3x+2sec2x
  • 1xloge33x+2sec2x
If y=x2+sin1x+logex, find dydx
  • dydx=2x+11x2+1x
  • dydx=x+11x2+1x
  • dydx=2x+11x21x
  • dydx=2x11x2+1x
If y=exloga+ealogx+ealoga, then dydx=
  • axloga+xa1
  • axloga+ax
  • axloga+axa1
  • axloga+axa
If y=|cosx|+|sinx|, then dydx at x=2π3 is
  • 12(3+1)
  • 2(31)
  • 12(31)
  • none of these
Find the derivative of sec1(x+1x1)+sin1(x1x+1)
  • 0
  • 1
  • 1
  • x+1x1
If y=log10x+logx10+logxx+log1010, then dydx=
  • 1xloge10loge10x(logex)2
  • 1loge10loge10x(logex)2
  • 1xloge10loge10x2(logex)2
  • None of these
limx0(x3sin3x+ax2+b) exists and is equal to 0, then
  • a=3 and b=92
  • a=3 and b=92
  • a=3 and b=92
  • a=3 and b=92
If y=logx3+3sin1x+kx2, then find dydx
  • 31x+311x2+k(2x)
  • 31x3+311x2+k(2x)
  • 31x311x2+k(2x)
  • 31x+311x2+2x
The value of limxcot1(xalogax)sec1axlogxa for (a>1) is equal to?
  • 1
  • 0
  • π2
  • Does not exist
The value of 
limxπ/62sin2x+sinx12sin2x3sinx+1
  • 3
  • 3
  • 6
  • 0
If y=sec1(x+1x1)+sin1(x1x+1), then dydx equals
  • 1
  • 0
  • x+1x1
  • x1x+1
If 2x+2y=2x+y, then dydx has the value equal to
  • 2y2x
  • 112x
  • 12y
  • 2x(12y)2y(2x1)
If f(x)=sinx+sin4xcosx, then f(2x2+π2) is
  • 4x{cos(2x2)sin8x2sin2x2}
  • 4x{cos(2x2)+sin8x2sin2x2}
  • {cos(2x2)sin8xsin2x2}
  • none of the above
The solution set of f(x)>g(x) where f(x)=12(52x+1) & g(x)=5x+4x(ln5) is 
  • x>1
  • 0<x<1
  • x0
  • x>0
f:RR and f(x)=x(x4+1)(x+1)+x4+2x2+x+1, then f(x) is
  • one-one ito
  • many-one onto
  • one-one onto
  • many-one into
Suppose the function f(x)f(2x) has the derivative 5 at x=1 and derivative 7 at x=2.The derivative  of the function f(x)f(4x) at x=1, has the value equal to 
  • 19
  • 9
  • 17
  • 14
Which one of the following statements is true?
  • If limxcf(x).g(x) and limxcf(x) exist, then limxcg(x) exists.
  • If limxcf(x).g(x) exists, then limxcf(x) and limxcg(x) exist.
  • If limxcf(x)+g(x) and limxcf(x) exist, then limxcg(x) also exists.
  • If limxcf(x)+g(x) exists, then limxcf(x) and limxcg(x) also exist.
If y=xa+xb+xa+xb+....., then dydx=

  • aab+2ay
  • bab+2by
  • aab+2by
  • bab+2ay
Given : f(x)=4x36x2cos2a+3xsin2a.sin6a+ln(2aa2) then 
  • f(x) is not defined at x=12
  • f(12)<0
  • f(x) is not defined at x=12
  • f(12)>0
Let f(x1+x2+...+xnn)=f(x1)+f(x2)+...+f(xn)n where all xiR are independent to each other and nN. if f(x) is differentiable and f(0)=a,f(0)=b and f(x) is equal to
  • a
  • 0
  • b
  • None of these
If  5f(x)+3f(1x)=x+2 and y=xf(x) then (dydx)x=1 is equal to ?
  • 14
  • 78
  • 1
  • none of these
If f(x)=1+x,x>0, then f(x)f(x) is equal to
  • 12x
  • 12
  • 14x
  • 2x+14x
y=sinx+sinx+sinx+ then dydx equals:(sinx>0)
  • cosx2y1
  • y2tanx+ysecx
  • 11+4sinx
  • 2cosxsinx+2y
f(x)={sinx;xnπ,n=0,±1,±2,±3.....2;otherwise and g(x)={x2+1;x04;x=0. 
Then limx0g(f(x)) is
  • 1
  • 4
  • 5
  • non-existent
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers