Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 4 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 4
lf
[
x
]
denotes the greatest integer contained in
x
,
then for 4
<
x
<
5
,
d
d
x
{
[
x
]
}
=
Report Question
0%
[
x
−
4
,
5
]
0%
[
x
]
0%
0
0%
1
Explanation
[
]
denote greatest integer function ,i.e
[
n
+
f
]
=
n
,
where
n
=
i
n
t
e
g
e
r
and
f
=
f
r
a
c
t
i
o
n
,
If
4
<
x
<
5
, then
[
x
]
=
4
=
constant
Hence
d
d
x
{
[
x
]
}
=
d
d
x
(
4
)
=
0
For the function
f
(
x
)
=
x
100
100
+
x
99
99
+
.
.
.
.
.
.
.
.
.
.
.
+
x
2
2
+
x
+
1
,
f
′
(
1
)
=
Report Question
0%
x
100
0%
100
0%
101
0%
None of these
Explanation
G
i
v
e
n
:
d
d
x
(
x
n
)
=
n
x
n
−
1
∴
f
o
r
f
(
x
)
=
x
100
100
+
x
99
99
+
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
+
x
2
2
+
1
f
′
(
x
)
=
100
x
99
100
+
99
x
98
99
+
.
.
.
.
.
.
.
.
.
.
.
.
.
+
2
x
2
+
1
H
e
r
e
f
′
(
1
)
=
1
+
1
+
.
.
.
.
.
.
.
.
.
t
o
100
t
e
r
m
=
100
H
e
n
c
e
f
(
x
)
=
x
100
100
+
x
99
99
+
.
.
.
.
.
.
.
.
.
.
.
+
x
2
2
+
x
+
1
=
100
lf
f
(
x
)
=
{
1
−
cos
x
x
x
≠
0
0
x
=
0
,
then
f
′
(
0
)
=
Report Question
0%
1
2
0%
1
4
0%
3
4
0%
Does not exist
Explanation
Using fundamental theorem,
f
′
(
0
)
=
lim
=\displaystyle \lim_{h\to 0}\frac{\dfrac{1-\cos h}{h}-0}{h}
=\displaystyle \lim_{h\to 0}\frac{1-\cos h}{h^2}
=\displaystyle \lim_{h \rightarrow 0} \dfrac{1}{2}.\frac{\sin^2 \frac{h}{2}}{\frac{h^2}{4}}= \dfrac{1}{2}
Derivative of which function is
f'(x) = x \sin x
?
Report Question
0%
x \sin x + \cos x
0%
x \cos x+ \sin x
0%
x\sin \left ( \dfrac{\pi}{2}-x \right ) + \cos \left ( \dfrac{\pi}{2}-x \right )
0%
x \cos \left ( \dfrac{\pi}{2}-x \right ) + \sin \left ( \dfrac{\pi}{2}-x \right )
Explanation
We know
\frac { d }{ dx } \left( f.g \right) =\frac { df }{ dx } .g+\frac { dg }{ dx } .f\\ \Rightarrow \frac { d }{ dx } \left( x.sin(x) \right) =\frac { d(x) }{ dx } .sin(x)+\frac { d(sin(x)) }{ dx } .x\\ \Rightarrow 1\times sin(x)+cos(x).x=x.cos(x)+sin(x)\\
We know that
cos(x)=sin\left( \frac { \pi }{ 2 } -x \right) sin(x)=cos\left( \frac { \pi }{ 2 } -x \right) \\\Rightarrow x.sin(\left( \frac { \pi }{ 2 } -x \right) +cos\left( \frac { \pi }{ 2 } -x \right)
Both B and C are correct
If
y=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^x
, then find
\dfrac {dy}{dx}
Report Question
0%
-\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
0%
\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
0%
-\displaystyle \frac {3}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2
0%
-\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\cos^2x+2^x\log 2
Explanation
Here, we have function
y=x^{-1/2}+\log _5x+\tan x+2^x
On differentiating w.r.t x, we get
\dfrac {dy}{dx}=\dfrac {d}{dx}(x)^{-1/2}+\dfrac {d}{dx}(\log _5x)+\dfrac {d}{dx} \tan x+\dfrac {d}{dx}(2^x)
=-\dfrac {1}{2}(x)^{-1/2-1}+\dfrac {1}{x \log _e5}+\sec ^2x+2^x \log 2
=-\dfrac {1}{2}x^{-3/2}+\dfrac {1}{x\log _e5}+\sec ^2x+2^x\log 2
If
\displaystyle y=5^{3-x^2}+(3-x^2)^5
, then
\displaystyle \frac{dy}{dx}=
Report Question
0%
-2x\left \{5^{3-x^2}\cdot \log_e5+5(3-x^2)^4\right \}
0%
-x\left \{5^{3-x^2}\cdot \log_e5+5(3-x^2)^4\right \}
0%
-2x\left \{5^{3-x^2}\cdot \log_e5+(3-x^2)^4\right \}
0%
-2x\left \{5^{3-x^2}+5(3-x^2)^4\right \}
Explanation
\displaystyle \frac { d }{ dx } \left( 5^{ 3-x^{ 2 } }+(3-x^{ 2 })^{ 5 } \right)
={ 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5\displaystyle \frac { d }{ dx } \left( 3-{ x }^{ 2 } \right) +5{ \left( 3-{ x }^{ 2 } \right) }^{ 4 }\displaystyle \frac { d }{ dx } { \left( 3-{ x }^{ 2 } \right) } }
={ 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5\left( -2x \right) } +5{ \left( 3-{ x }^{ 2 } \right) }^{ 4 }\left( -2x \right)
=-2x\left( { 5 }^{ 3-{ x }^{ 2 } }\log _{ e }{ 5+5\left( 3-{ x }^{ 2 } \right) } \right)
If
y=\log_{3}x+3 \log_{e} x+2 \tan x
, then
\displaystyle \frac{dy}{dx}=
Report Question
0%
\displaystyle \frac {1}{x \log_e 3}+\displaystyle \frac {3}{x}+2 \sec^2 x
0%
\displaystyle \frac {1}{x \log_e 3}+\displaystyle \frac {3}{x}+ \sec^2 x
0%
\displaystyle \frac {1}{\log_e 3}+\displaystyle \frac {3}{x}+2 \sec^2 x
0%
\displaystyle \frac {1}{x \log_e 3}-\displaystyle \frac {3}{x}+2 \sec^2 x
Explanation
\displaystyle \frac { d }{ dx } \left( \log _{ 3 }{ x } +3\log _{ e }{ x } +2\tan { x } \right)
=\displaystyle \frac { d }{ dx } \left( \displaystyle \frac { \log_e { x } }{ \log { 3 } } +3\log_e { x } +2\tan { x } \right)
=\displaystyle \frac { 1 }{ x\log _{ e }{ 3 } } +\displaystyle \frac { 3 }{ x } +2\sec ^{ 2 }{ x }
If
y=x^2+sin^{-1}x+log_ex
, find
\dfrac {dy}{dx}
Report Question
0%
\displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
0%
\displaystyle \frac {dy}{dx}=x+\displaystyle \frac{1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
0%
\displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}-\displaystyle \frac {1}{x}
0%
\frac {dy}{dx}=2x-\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}
Explanation
y=x^2+sin^{-1}+log_ex
On differentiating, we get
\dfrac {dy}{dx}=\dfrac {d}{dx}(x^2)+\dfrac {d}{dx}sin^{-1}x)+\dfrac {d}{dx}(log_ex)
or
\dfrac {dy}{dx}=2(x)^{2-1}+\dfrac {1}{\sqrt {1-x^2}}+\dfrac {d}{dx}(log_ex)
\dfrac {dy}{dx}=2x+\dfrac {1}{\sqrt {1-x^2}}+\dfrac {1}{x}
If
\displaystyle y=e^{x \log a}+e^{a \log x}+e^{a \log a}
, then
\displaystyle \frac{dy}{dx}=
Report Question
0%
a^x \log a+x^{a-1}
0%
a^x \log a+ax
0%
a^x \log a+ax^{a-1}
0%
a^x \log a+ax^{a}
Explanation
Let
y=\displaystyle e^{x log a}+e^{a log x}+e^{a log a}
={ e }^{ \log _{ e }{ { a }^{ x } } }+{ e }^{ \log _{ e }{ { x }^{ a } } }+{ e }^{ \log _{ e }{ { a }^{ a } } }
={ a }^{ x }+{ x }^{ a }+{ a }^{ a }
......... Since
{ e }^{ \log _{ e }{ x } }=x
\displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left( { a }^{ x }+{ x }^{ a }+{ a }^{ a } \right)
={ a }^{ x }\log { a } +a.{ x }^{ a-1 }
If
y=|\cos x|+|\sin x|
, then
\displaystyle \dfrac {dy}{dx}
at
x=\dfrac {2\pi}{3}
is
Report Question
0%
\displaystyle \dfrac {1}{2}(\sqrt 3+1)
0%
2(\sqrt 3-1)
0%
\displaystyle \dfrac {1}{2}(\sqrt 3-1)
0%
none of these
Explanation
\displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left( |cosx|+|sinx| \right)
=-\sin { x } +\cos { x }
at
x=\displaystyle \frac { 2\pi }{ 3 }
=\left| -\sin { \displaystyle \frac { 2\pi }{ 3 } } \right| +\left| \cos { \displaystyle \frac { 2\pi }{ 3 } } \right|
=\displaystyle \frac { \sqrt { 3 } }{ 2 } -\displaystyle \frac { 1 }{ 2 }
=\displaystyle \frac { 1 }{ 2 } \left( \sqrt { 3 } -1 \right)
Find the derivative of
\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )
Report Question
0%
0
0%
1
0%
-1
0%
\displaystyle \frac{x+1}{x-1}
Explanation
Let
y=\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )
y=\cos ^{ -1 }{ \left( \displaystyle \frac { x-1 }{ x+1 } \right) +\sin ^{ -1 }{ \left( \displaystyle \frac { x-1 }{ x+1 } \right) } } =\displaystyle \frac { \pi }{ 2 }
\therefore \displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left(\displaystyle \frac { \pi }{ 2 } \right) =0
\because \sin ^{ -1 }{ \theta +\cos ^{ -1 }{ \theta } =\displaystyle \frac { \pi }{ 2 } }
If
y=\log_{10}x+\log_x 10+\log_xx+\log_{10} 10
, then
\displaystyle \frac{dy}{dx}=
Report Question
0%
\displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}
0%
\displaystyle \frac {1}{\log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}
0%
\displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x^2(\log_ex)^2}
0%
None of these
Explanation
\displaystyle \dfrac { d }{ dx } \left( \log _{ 10 }{ x+\log _{ x }{ 10+\log _{ x }{ x+\log _{ 10 }{ 10 } } } } \right)
=\displaystyle \dfrac { 1 }{ x\log _{ e }{ 10 } } +\displaystyle \dfrac { \left( -\log _{ e }{ 10\left( \displaystyle \dfrac { 1 }{ x } \right) } \right) }{ { \left( \log_e { x } \right) }^{ 2 } }
=\displaystyle \dfrac { 1 }{ x\log _{ e }{ 10 } } -\displaystyle \dfrac { \log _{ e }{ 10 } }{ x{ \left( \log_e { x } \right) }^{ 2 } }
\displaystyle \lim_{x\to0}\left( x^{-3}\sin{3x} + ax^{-2} + b \right)
exists and is equal to 0, then
Report Question
0%
a = -3
and
b = \dfrac{9}{2}
0%
a = 3
and
b = \dfrac{9}{2}
0%
a = -3
and
b = -\dfrac{9}{2}
0%
a = 3
and
b = -\dfrac{9}{2}
Explanation
\displaystyle\lim_{x\to\infty}\displaystyle\frac{\sin3x}{x^3}+\displaystyle\frac{a}{x^2}+b = \lim_{x\to0}\displaystyle\frac{\sin3x+ax+bx^3}{x^3}
=\displaystyle\lim_{x\to0}\displaystyle\frac{3\displaystyle\frac{\sin3x}{3x}+a+bx^2}{x^2}
\mbox{For existence, }
(3+a)=0 \mbox{ or } a=-3
\therefore L=\displaystyle\lim_{x\to0}\displaystyle\frac{\sin3x-3x+bx^3}{x^3}
\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{\sin t - t}{t^3}+b = 0 ........ (3x=t )
The left hand side reduces to
\dfrac{0}{0}
form by substituting the limit
Then, using L'Hospital's rule
\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{\cos t - 1}{3t^2}+b = 0
Again, applying
L'Hospital's rule
\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{-\sin t}{6t}+b = 0
\Rightarrow -\displaystyle\frac{27}{6}+b=0 \mbox{ or } b=\frac{9}{2}
If
y=logx^3+3 sin^{-1}x+kx^2
, then find
\displaystyle \frac {dy}{dx}
Report Question
0%
3\cdot \displaystyle \frac {1}{x}+3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)
0%
3\cdot \displaystyle \frac {1}{x^3}+3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)
0%
3\cdot \displaystyle \frac {1}{x}-3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)
0%
3\cdot \displaystyle \frac {1}{x}+3\cdot \frac {1}{\sqrt {1-x^2}}+2x
Explanation
Here,
y=\log x^3+3 \sin^{-1} x+kx^2
On differentiating we get
\displaystyle \dfrac {dy}{dx}=\dfrac {d}{dx}[\log x^3]+\dfrac {d}{dx}[3 \sin^{-1}x]+\dfrac {d}{dx}[kx^2]
=3\displaystyle \dfrac {d}{dx}[\log x]+3\dfrac {d}{dx}(\sin^{-1}x)+k\dfrac {d}{dx}(x^2)
=3\cdot \displaystyle \dfrac {1}{x}+3\cdot \dfrac {1}{\sqrt {1-x^2}}+k(2x)
The value of
\displaystyle\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}
for
(a>1)
is equal to?
Report Question
0%
1
0%
0
0%
\displaystyle\frac{\pi}{2}
0%
Does not exist
Explanation
\mathrm{L} \displaystyle = \lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}
\displaystyle = \lim_{x\rightarrow\infty}{\frac{\cot^{-1}{\displaystyle \frac{\log{x}}{\log a. x^a}}}{\sec^{-1}{\displaystyle \frac{a^x\log a}{\log x}}}}=\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{\displaystyle \frac{1}{a\log a. x^a}}}{\sec^{-1}{\displaystyle \frac{a^x\log^2 a. x}{1}}}}=\frac{\cot^{-1}0}{\sec^{-1} \infty}=\frac{\pi/2}{\pi/2}=1
Note: L-Hospital's rule has been used in step two in both numerator and denominator alone.
The value of
\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 \sin^2 x + \sin x-1}{2 \sin^2 x - 3 \sin x + 1}
Report Question
0%
3
0%
-3
0%
6
0%
0
Explanation
We have
\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 sin^2 x + sin x -1}{2 sin^2 x-3 sin x + 1}
\displaystyle = \lim_{x \rightarrow \pi/6} \frac{(2 sin x - 1)(sin x + 1)}{(2 sin x - 1)(sin x - 1)}
\displaystyle = \lim_{x \rightarrow \pi/6} \frac{sin x + 1}{sin x - 1} = - 3
If
y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)
, then
\displaystyle\frac{dy}{dx}
equals
Report Question
0%
1
0%
0
0%
\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}
0%
\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}
Explanation
y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)
y=\cos ^{ -1 }{ \left(\displaystyle \frac { \sqrt { x } -1 }{ \sqrt { x } +1 } \right) +\sin ^{ -1 }{ \left(\displaystyle \frac { \sqrt { x } -1 }{ \sqrt { x } +1 } \right) } } =\displaystyle \frac { \pi }{ 2 }
.............
\because \sin ^{ -1 }{ \theta +\cos ^{ -1 }{ \theta } =\displaystyle \frac { \pi }{ 2 } }
\therefore \displaystyle \frac { dy }{ dx } =\displaystyle \frac { d }{ dx } \left(\displaystyle \frac { \pi }{ 2 } \right) =0
If
2^x+2^y=2^{x+y}
, then
\displaystyle \frac {dy}{dx}
has the value equal to
Report Question
0%
\displaystyle -\frac {2^y}{2^x}
0%
\displaystyle \frac {1}{1-2^x}
0%
\displaystyle 1-2^y
0%
\displaystyle \frac {2^x(1-2^y)}{2^y(2^x-1)}
Explanation
2^x+2^y=2^{x+y}
Differentiating both the sides
\Rightarrow \displaystyle \dfrac { d }{ dx } \left( 2^{ x }+2^{ y } \right) =\displaystyle \dfrac { d }{ dx } \left(2^{ x+y }\right)
\Rightarrow { 2 }^{ x }\log { 2+{ 2 }^{ y }\log { 2\displaystyle \dfrac { dy }{ dx } ={ 2 }^{ x+y }\log { 2 } \left( 1+\displaystyle \dfrac { dy }{ dx } \right) } }
\Rightarrow \log { 2\left( { 2 }^{ x }+{ 2 }^{ y }\displaystyle \dfrac { dy }{ dx } \right) =\log { 2 } \left( { 2 }^{ x+y }+{ 2 }^{ x+y }\displaystyle \dfrac { dy }{ dx } \right) }
\Rightarrow \left( { 2 }^{ y }-{ 2 }^{ x+y } \right)\displaystyle \dfrac { dy }{ dx } ={ 2 }^{ x+y }-{ 2 }^{ x }
\Rightarrow \displaystyle \dfrac { dy }{ dx } =\displaystyle \dfrac { { 2 }^{ x }{ 2 }^{ y }-{ 2 }^{ x } }{ { 2 }^{ y }-{ 2 }^{ x }{ 2 }^{ y } } =\displaystyle \dfrac { { 2 }^{ x }\left( { 2 }^{ y }-1 \right) }{ { 2 }^{ y }\left( 1-{ 2 }^{ x } \right) }
=\displaystyle \dfrac { { 2 }^{ x }\left( 1-{ 2 }^{ y } \right) }{ { 2 }^{ y }\left( { 2 }^{ x }-1 \right) }
If
f'(x)=\sin x+\sin 4x\cdot \cos x
, then
f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )
is
Report Question
0%
4x\left \{\cos(2x^2)-sin 8x^2\cdot \sin 2x^2\right \}
0%
4x\left \{\cos(2x^2)+\sin 8x^2\cdot \sin 2x^2\right \}
0%
\left \{\cos (2x^2)-\sin 8x\cdot \sin 2x^2\right \}
0%
none of the above
Explanation
f'(x)=\sin x+\sin 4x\cdot \cos x
f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )
=
\displaystyle \frac { d }{ dx } \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi }{ 2 } \right) \left[ \sin { \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi }{ 2 } \right) +\sin { 4 } \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi }{ 2 } \right) .\cos { \left( 2{ x }^{ 2 }+\displaystyle \frac { \pi }{ 2 } \right) } } \right]
=4x\left[ \cos { 2{ x }^{ 2 }-\sin { 8 } { x }^{ 2 }.\sin { 2{ x }^{ 2 } } } \right]
The solution set of
{f}'(x)>{g}'(x)
where
f(x)=\displaystyle \frac{1}{2}(5^{2x+1})
&
g(x)= 5^x+4x(\ln 5)
is
Report Question
0%
x>1
0%
0< x< 1
0%
x \leq 0
0%
x>0
Explanation
Given,
f(x)= \dfrac {1}{2}(5^{2x+1})
f'(x)= 5^{2x+1}\times \log 5
g'(x)=5^{x}l\log 5 +4\ln 5=\ln 5(5^{x}+4)
f'(x)>g'(x)
=>5\times 5^{2x}>(5^{x}+4)
Let
t=5^{x}
=> 5t^{2}-t-4>0
=>(t-1)(t+\frac{4}{5})>0
=>t>1
or
t>-\frac{4}{5}
=>5^{x}>5^{0} =>x>0
so,
x>0
f:R\rightarrow R
and
\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}
, then
f(x)
is
Report Question
0%
one-one ito
0%
many-one onto
0%
one-one onto
0%
many-one into
Explanation
\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}
\displaystyle \quad \quad =\frac {x(x^4+1)(x+1)+(x^4+1)+1}{x^2+x+1}
\displaystyle \quad \quad =\frac {(x^4+1)(x^2+x+1)+1}{x^2+x+1}
\displaystyle \quad \quad =(x^4+1)+\frac {1}{x^2+x+1}
\displaystyle f'(x) =4x^3-\frac {2x+1}{(x^2+x+1)^2}=
not always positive or negative
Thus,
f
is many one.
Also range and co-domain of
f
are not same,
Hence is many-one into function
Suppose the function
f(x)-f(2x)
has the derivative
5
at
x=1
and derivative
7
at
x=2
.The derivative of the function
f(x)-f(4x)
at
x=1
, has the value equal to
Report Question
0%
19
0%
9
0%
17
0%
14
Which one of the following statements is true?
Report Question
0%
If
\displaystyle\lim_{x\rightarrow c}{f(x).g(x)}
and
\displaystyle\lim_{x\rightarrow c}{f(x)}
exist, then
\displaystyle\lim_{x\rightarrow c}{g(x)}
exists.
0%
If
\displaystyle\lim_{x\rightarrow c}{f(x).g(x)}
exists, then
\displaystyle\lim_{x\rightarrow c}{f(x)}
and
\displaystyle\lim_{x\rightarrow c}{g(x)}
exist.
0%
If
\displaystyle\lim_{x\rightarrow c}{f(x)+g(x)}
and
\displaystyle\lim_{x\rightarrow c}{f(x)}
exist, then
\displaystyle\lim_{x\rightarrow c}{g(x)}
also exists.
0%
If
\displaystyle\lim_{x\rightarrow c}{f(x)+g(x)}
exists, then
\displaystyle\lim_{x\rightarrow c}{f(x)}
and
\displaystyle\lim_{x\rightarrow c}{g(x)}
also exist.
Explanation
For option A and B, take
f(x)=x
and
g(x)=\dfrac { 1 }{ x }
.
Limit of
g(x)
doesn't exist at
x=0
, but for
\displaystyle \lim _{ x\to 0} f(x).g(x)
and
f(x)=x
limit exists.
For option C,
Lets assume
h(x) = f(x)+g(x)
,
Take limit on both sides as
x\to c
\lim_{x\to c}h(x) = \lim_{x\to c}(f(x)+g(x))
And it is given that
\lim_{x\to c}f(x)
exists.
Using sum law of limits:
If
\lim_{x\to c}F(x)
and
\lim_{x\to c}G(x)
exists, then
\lim_{x\to c}(F(x)\pm G(x))
also exists.
\therefore \lim_{x\to c}(h(x) - f(x)) = \lim_{x\to c}(f(x) + g(x) - f(x)) = \lim_{x\to c}g(x)
exists.
For option D, take
f(x)=-\dfrac{cosx}{x^2}
and
g(x)=\dfrac { 1 }{ x^2 }
.
Limit of
g(x)
and
f(x)=-\dfrac{cosx}{x^2}
doesn't exist at
x=0
, but for
\displaystyle \lim _{ x\to 0} f(x)+g(x)
limit exists.
Hence option C.
If
\displaystyle y=\frac { x }{ a+\displaystyle\frac { x }{ b+\displaystyle\frac { x }{ a+\displaystyle\frac { x }{ b+.....\infty } } } }
, then
\cfrac{dy}{dx} =
Report Question
0%
\displaystyle\frac{a}{ab+2ay}
0%
\displaystyle\frac{b}{ab+2by}
0%
\displaystyle\frac{a}{ab+2by}
0%
\displaystyle\frac{b}{ab+2ay}
Explanation
\displaystyle y = \frac{x}{a+\frac{x}{b+y}}
\Rightarrow \displaystyle y =\frac{x(b+y)}{ab+ay+x}
\Rightarrow aby+ay^2+xy=bx+xy\Rightarrow aby+ay^2=bx
Differentiating both sides w.r.t
x
\Rightarrow\displaystyle (ab+2ay)\frac{dy}{dx}=b\therefore \frac{dy}{dx}=\frac{b}{ab+2ay}
Given :
f(x)=4x^3-6x^2\cos2a+3x \sin 2a.\sin 6a+\sqrt{\ln (2a-a^2)}
then
Report Question
0%
f(x)
is not defined at
x=\displaystyle \frac{1}{2}
0%
{f}'(\displaystyle \frac{1}{2})<0
0%
f'(x)
is not defined at
x=\displaystyle \frac{1}{2}
0%
{f}'(\displaystyle \frac{1}{2})>0
Explanation
f'(x)=12x^{2}-12xcos2a+3sin2a.sin6a+0
f'(1/2)=\frac{12}{4}-\frac{12}{2}cos2a+3sin2a.sin6a
=3-6cos2a+1.5(cos4a-cos8a)
So, it will alwyas be greater than
0
Let
\displaystyle f\left( \frac { { x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ n } }{ n } \right) =\frac { f\left( { x }_{ 1 } \right) +f\left( { x }_{ 2 } \right) +...+f\left( { x }_{ n } \right) }{ n }
where all
{ x }_{ i }\in R
are independent to each other and
n\in N
. if
f(x)
is differentiable and
f'\left( 0 \right) =a,f\left( 0 \right) =b
and
f'\left( x \right)
is equal to
Report Question
0%
a
0%
0
0%
b
0%
None of these
Explanation
Differentiating the given equation w.r.t.
{ x }_{ 1 },
we get
\displaystyle \dfrac { 1 }{ n } f'\left( \dfrac { { x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ n } }{ n } \right) =\dfrac { f'\left( { x }_{ 1 } \right) }{ n }
[
Since all
{ x }_{ i }'s
are independent to each other,
\displaystyle \therefore \dfrac { d{ x }_{ i } }{ { dx }_{ j } } =0
if
i\neq j
and
\displaystyle \dfrac { { dx }_{ i } }{ { dx }_{ j } } =1
if
(i=j)]
On putting
{ x }_{ 1 }={ x }_{ 2 }=...={ x }_{ n-1 }=0
and
{ x }_{ n }=x,
we get
\displaystyle f'\left( \dfrac { x }{ n } \right) =f'\left( 0 \right) =a.
On integrating, we get
\displaystyle nf'\left( \dfrac { x }{ n } \right) =ax+c
Since
f(0)=b,
we have
c=nb
\displaystyle \therefore nf'\left( \dfrac { x }{ n } \right) =ax+nb\Rightarrow nf'\left( x \right) =nax+nb\Rightarrow f\left( x \right) =ax+b.
\displaystyle \therefore f'\left( x \right) =a,\forall x\in R
If
5f(x)+3f\left ( \displaystyle \frac{1}{x} \right )=x+2
and
y=xf(x)
then
\left (\displaystyle \frac{dy}{dx} \right )_{x=1}
is equal to ?
Report Question
0%
14
0%
\displaystyle \frac{7}{8}
0%
1
0%
none of these
Explanation
5f(x)+3f\left ( \displaystyle \frac{1}{x} \right )=x+2\Rightarrow (1)
Replace
x
by
\dfrac{1}{x}
\Rightarrow 5f\left ( \displaystyle \frac{1}{x} \right )+3f(x)=\dfrac{1}{x}+2\Rightarrow (2)
\Rightarrow 5\times(1)-3\times (2)\Rightarrow 16f(x) =5x-\dfrac{3}{x}+4=\dfrac{5x^2+4x-3}{x}
\therefore y = xf(x) =\dfrac{5x^2+4x-3}{16}
\Rightarrow \dfrac{dy}{dx}=\dfrac{10x+4}{16}
\therefore \left(\dfrac{dy}{dx}\right)_{x=1}=\dfrac{10+4}{16}=\dfrac{7}{8}
If
\displaystyle f\left( x \right) =\sqrt { 1+\sqrt { x } } , x > 0,
then
\displaystyle f\left ( x \right )\cdot f'\left ( x \right )
is equal to
Report Question
0%
\displaystyle \frac{1}{2\sqrt{x}}
0%
\displaystyle \frac{1}{2}
0%
\displaystyle \frac{1}{4\sqrt{x}}
0%
\displaystyle \frac{2\sqrt{x}+1}{4\sqrt{x}}
Explanation
Let
y=f\left( x \right) =\sqrt { 1+\sqrt { x } }
Then,
{ y }^{ 2 }=1+\sqrt { x }
Differentiating w.r.t. x, we get,
\displaystyle 2y\frac{dy}{dx}=\frac{1}{2\sqrt{x}}
\Rightarrow f(x)f'(x)=\displaystyle \frac{1}{4\sqrt{x}}
y=\sqrt{\sin x+\sqrt{\sin x +\sqrt{\sin x+-\infty }}}
then
\displaystyle \frac{dy}{dx}
equals:
(\sin x> 0)
Report Question
0%
\displaystyle \frac{\cos x}{2y-1}
0%
\displaystyle \frac{y}{2\tan x+y\sec x}
0%
\displaystyle \frac{1}{\sqrt{1+4\sin x}}
0%
\displaystyle \frac{2\cos x}{\sin x+2y}
Explanation
y=\sqrt{\sin x\sqrt{\sin x \sqrt{\sin x+-\infty }}}
Taking square on both the sides, we get
{ y }^{ 2 }=\sin { x } +\sqrt { \sin x\sqrt { \sin x\sqrt { \sin x+-\infty } } }
{ y }^{ 2 }=\sin { x } +y
............ Since
y=\sqrt{\sin x\sqrt{\sin x \sqrt{\sin x+-\infty }}}
2y\displaystyle \frac { dy }{ dx } =\cos { x } +\displaystyle \frac { dy }{ dx }
\displaystyle \frac { dy }{ dx } =\displaystyle \frac { \cos { x } }{ 2y-1 }
f\left( x \right)=\begin{cases} \sin { x } \qquad ;\qquad x\neq n\pi ,n=0,\pm 1,\pm 2,\pm 3..... \\ 2\qquad \qquad ;\qquad otherwise \end{cases}
and
g\left( x \right) =\begin{cases} { x }^{ 2 }+1\qquad ;\qquad x\neq 0 \\ 4\qquad \qquad ;\qquad x=0 \end{cases}.
Then
\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)\right)}
is
Report Question
0%
1
0%
4
0%
5
0%
non-existent
Explanation
\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right) \right) } =g\left( f\left( 0 \right) \right)
=g(2)={ 2 }^{ 2 }+1=5
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page