CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 4 - MCQExams.com


lf $$[\mathrm{x}]$$ denotes the greatest integer contained in $$\mathrm{x},$$ then for 4 $$<\mathrm{x}<5,\ \displaystyle \frac{d}{dx}\{[x]\}=$$
  • $$[x - 4, 5]$$
  • $$[x]$$
  • $$0$$
  • $$1$$
For the function $$f(x) = \displaystyle \frac{x^{100}}{100} + \frac{x^{99}}{99} + ........... + \frac{x^2}{2} + x+1$$, $$f'(1) =$$
  • $$x^{100}$$
  • $$100$$
  • $$101$$
  • None of these

lf $$f(x)=\left\{\begin{matrix}\displaystyle \frac{1-\cos x}{x} &x\neq 0 \\ 0 & x=0\end{matrix}\right.$$,  then $$f^{'}(0)=$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac {1}{4}$$
  • $$\dfrac{3}{4}$$
  • Does not exist
Derivative of which function is $$f'(x) = x \sin x$$?
  • $$x \sin x + \cos x$$
  • $$x \cos  x+ \sin x$$
  • $$x\sin \left ( \dfrac{\pi}{2}-x \right ) + \cos \left ( \dfrac{\pi}{2}-x \right )$$
  • $$x \cos \left ( \dfrac{\pi}{2}-x \right ) + \sin \left ( \dfrac{\pi}{2}-x \right )$$
If $$y=x^{-\tfrac12}+\log_5x+\displaystyle \frac {\sin x}{\cos x}+2^x$$, then find $$\dfrac {dy}{dx}$$
  • $$-\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2$$
  • $$\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2$$
  • $$-\displaystyle \frac {3}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\sec^2x+2^x\log 2$$
  • $$-\displaystyle \frac {1}{2}x^{-3/2}+\displaystyle \frac {1}{x\log_e5}+\cos^2x+2^x\log 2$$
If $$\displaystyle y=5^{3-x^2}+(3-x^2)^5$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$-2x\left \{5^{3-x^2}\cdot \log_e5+5(3-x^2)^4\right \}$$
  • $$-x\left \{5^{3-x^2}\cdot \log_e5+5(3-x^2)^4\right \}$$
  • $$-2x\left \{5^{3-x^2}\cdot \log_e5+(3-x^2)^4\right \}$$
  • $$-2x\left \{5^{3-x^2}+5(3-x^2)^4\right \}$$
If $$y=\log_{3}x+3 \log_{e} x+2 \tan x$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$\displaystyle \frac {1}{x \log_e 3}+\displaystyle \frac {3}{x}+2 \sec^2 x$$
  • $$\displaystyle \frac {1}{x \log_e 3}+\displaystyle \frac {3}{x}+ \sec^2 x$$
  • $$\displaystyle \frac {1}{\log_e 3}+\displaystyle \frac {3}{x}+2 \sec^2 x$$
  • $$\displaystyle \frac {1}{x \log_e 3}-\displaystyle \frac {3}{x}+2 \sec^2 x$$
If $$y=x^2+sin^{-1}x+log_ex$$, find $$\dfrac {dy}{dx}$$
  • $$\displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}$$
  • $$\displaystyle \frac {dy}{dx}=x+\displaystyle \frac{1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}$$
  • $$\displaystyle \frac {dy}{dx}=2x+\displaystyle \frac {1}{\sqrt {1-x^2}}-\displaystyle \frac {1}{x}$$
  • $$\frac {dy}{dx}=2x-\displaystyle \frac {1}{\sqrt {1-x^2}}+\displaystyle \frac {1}{x}$$
If $$\displaystyle y=e^{x \log a}+e^{a \log x}+e^{a \log a}$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$a^x \log a+x^{a-1}$$
  • $$a^x \log a+ax$$
  • $$a^x \log a+ax^{a-1}$$
  • $$a^x \log a+ax^{a}$$
If $$y=|\cos x|+|\sin x|$$, then $$\displaystyle \dfrac {dy}{dx}$$ at $$x=\dfrac {2\pi}{3}$$ is
  • $$\displaystyle \dfrac {1}{2}(\sqrt 3+1)$$
  • $$2(\sqrt 3-1)$$
  • $$\displaystyle \dfrac {1}{2}(\sqrt 3-1)$$
  • none of these
Find the derivative of $$\sec^{-1}\left (\displaystyle \frac {x+1}{x-1}\right )+\sin^{-1}\left (\displaystyle \frac {x-1}{x+1}\right )$$
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$\displaystyle \frac{x+1}{x-1}$$
If $$y=\log_{10}x+\log_x 10+\log_xx+\log_{10} 10$$, then $$\displaystyle \frac{dy}{dx}=$$
  • $$\displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}$$
  • $$\displaystyle \frac {1}{\log_e 10}-\displaystyle \frac {\log_e 10}{x(\log_ex)^2}$$
  • $$\displaystyle \frac {1}{x \log_e 10}-\displaystyle \frac {\log_e 10}{x^2(\log_ex)^2}$$
  • None of these
$$\displaystyle \lim_{x\to0}\left( x^{-3}\sin{3x} + ax^{-2} + b \right)$$ exists and is equal to 0, then
  • $$a = -3$$ and $$b = \dfrac{9}{2}$$
  • $$a = 3$$ and $$b = \dfrac{9}{2}$$
  • $$a = -3$$ and $$b = -\dfrac{9}{2}$$
  • $$a = 3$$ and $$b = -\dfrac{9}{2}$$
If $$y=logx^3+3 sin^{-1}x+kx^2$$, then find $$\displaystyle \frac {dy}{dx}$$
  • $$3\cdot \displaystyle \frac {1}{x}+3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)$$
  • $$3\cdot \displaystyle \frac {1}{x^3}+3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)$$
  • $$3\cdot \displaystyle \frac {1}{x}-3\cdot \frac {1}{\sqrt {1-x^2}}+k(2x)$$
  • $$3\cdot \displaystyle \frac {1}{x}+3\cdot \frac {1}{\sqrt {1-x^2}}+2x$$
The value of $$\displaystyle\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}$$ for $$(a>1)$$ is equal to?
  • $$1$$
  • $$0$$
  • $$\displaystyle\frac{\pi}{2}$$
  • Does not exist
The value of 
$$\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 \sin^2 x + \sin  x-1}{2 \sin^2 x - 3  \sin  x + 1} $$
  • $$3$$
  • $$-3$$
  • $$6$$
  • $$0$$
If $$y = sec^{-1}\left(\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}\right) + \sin^{-1}\left(\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}\right)$$, then $$\displaystyle\frac{dy}{dx}$$ equals
  • $$1$$
  • $$0$$
  • $$\displaystyle\frac{\sqrt x + 1}{\sqrt x - 1}$$
  • $$\displaystyle\frac{\sqrt x - 1}{\sqrt x + 1}$$
If $$2^x+2^y=2^{x+y}$$, then $$\displaystyle \frac {dy}{dx}$$ has the value equal to
  • $$\displaystyle -\frac {2^y}{2^x}$$
  • $$\displaystyle \frac {1}{1-2^x}$$
  • $$\displaystyle 1-2^y$$
  • $$\displaystyle \frac {2^x(1-2^y)}{2^y(2^x-1)}$$
If $$f'(x)=\sin x+\sin 4x\cdot \cos x$$, then $$f'\left (2x^2+\displaystyle \frac {\pi}{2}\right )$$ is
  • $$4x\left \{\cos(2x^2)-sin 8x^2\cdot \sin 2x^2\right \}$$
  • $$4x\left \{\cos(2x^2)+\sin 8x^2\cdot \sin 2x^2\right \}$$
  • $$\left \{\cos (2x^2)-\sin 8x\cdot \sin 2x^2\right \}$$
  • none of the above
The solution set of $${f}'(x)>{g}'(x)$$ where $$f(x)=\displaystyle \frac{1}{2}(5^{2x+1})$$ & $$g(x)= 5^x+4x(\ln 5)$$ is 
  • $$x>1$$
  • $$0< x< 1$$
  • $$x \leq 0$$
  • $$x>0$$
$$f:R\rightarrow R$$ and $$\displaystyle f(x)=\frac {x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$$, then $$f(x)$$ is
  • one-one ito
  • many-one onto
  • one-one onto
  • many-one into
Suppose the function $$f(x)-f(2x)$$ has the derivative $$5$$ at $$x=1$$ and derivative $$7$$ at $$x=2$$.The derivative  of the function $$f(x)-f(4x)$$ at $$x=1$$, has the value equal to 
  • $$19$$
  • $$9$$
  • $$17$$
  • $$14$$
Which one of the following statements is true?
  • If $$\displaystyle\lim_{x\rightarrow c}{f(x).g(x)}$$ and $$\displaystyle\lim_{x\rightarrow c}{f(x)}$$ exist, then $$\displaystyle\lim_{x\rightarrow c}{g(x)}$$ exists.
  • If $$\displaystyle\lim_{x\rightarrow c}{f(x).g(x)}$$ exists, then $$\displaystyle\lim_{x\rightarrow c}{f(x)}$$ and $$\displaystyle\lim_{x\rightarrow c}{g(x)}$$ exist.
  • If $$\displaystyle\lim_{x\rightarrow c}{f(x)+g(x)}$$ and $$\displaystyle\lim_{x\rightarrow c}{f(x)}$$ exist, then $$\displaystyle\lim_{x\rightarrow c}{g(x)}$$ also exists.
  • If $$\displaystyle\lim_{x\rightarrow c}{f(x)+g(x)}$$ exists, then $$\displaystyle\lim_{x\rightarrow c}{f(x)}$$ and $$\displaystyle\lim_{x\rightarrow c}{g(x)}$$ also exist.
If $$\displaystyle y=\frac { x }{ a+\displaystyle\frac { x }{ b+\displaystyle\frac { x }{ a+\displaystyle\frac { x }{ b+.....\infty  }  }  }  } $$, then $$\cfrac{dy}{dx} =$$

  • $$\displaystyle\frac{a}{ab+2ay}$$
  • $$\displaystyle\frac{b}{ab+2by}$$
  • $$\displaystyle\frac{a}{ab+2by}$$
  • $$\displaystyle\frac{b}{ab+2ay}$$
Given : $$f(x)=4x^3-6x^2\cos2a+3x \sin 2a.\sin 6a+\sqrt{\ln (2a-a^2)}$$ then 
  • $$f(x)$$ is not defined at $$x=\displaystyle \frac{1}{2}$$
  • $${f}'(\displaystyle \frac{1}{2})<0$$
  • $$f'(x)$$ is not defined at $$x=\displaystyle \frac{1}{2}$$
  • $${f}'(\displaystyle \frac{1}{2})>0$$
Let $$\displaystyle f\left( \frac { { x }_{ 1 }+{ x }_{ 2 }+...+{ x }_{ n } }{ n }  \right) =\frac { f\left( { x }_{ 1 } \right) +f\left( { x }_{ 2 } \right) +...+f\left( { x }_{ n } \right)  }{ n } $$ where all $${ x }_{ i }\in R$$ are independent to each other and $$n\in N$$. if $$f(x)$$ is differentiable and $$f'\left( 0 \right) =a,f\left( 0 \right) =b$$ and $$f'\left( x \right) $$ is equal to
  • $$a$$
  • $$0$$
  • $$b$$
  • None of these
If  $$5f(x)+3f\left ( \displaystyle \frac{1}{x} \right )=x+2$$ and $$y=xf(x)$$ then $$\left (\displaystyle  \frac{dy}{dx} \right )_{x=1}$$ is equal to ?
  • $$14$$
  • $$\displaystyle \frac{7}{8}$$
  • $$1$$
  • none of these
If $$\displaystyle  f\left( x \right) =\sqrt { 1+\sqrt { x }  } , x > 0,$$ then $$\displaystyle f\left ( x \right )\cdot f'\left ( x \right )$$ is equal to
  • $$\displaystyle \frac{1}{2\sqrt{x}}$$
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{4\sqrt{x}}$$
  • $$\displaystyle \frac{2\sqrt{x}+1}{4\sqrt{x}}$$
$$y=\sqrt{\sin x+\sqrt{\sin x +\sqrt{\sin x+-\infty }}}$$ then $$\displaystyle \frac{dy}{dx}$$ equals:$$(\sin x> 0)$$
  • $$\displaystyle \frac{\cos x}{2y-1}$$
  • $$\displaystyle \frac{y}{2\tan x+y\sec x}$$
  • $$\displaystyle \frac{1}{\sqrt{1+4\sin x}}$$
  • $$\displaystyle \frac{2\cos x}{\sin x+2y}$$
$$f\left( x \right)=\begin{cases} \sin { x } \qquad ;\qquad x\neq n\pi ,n=0,\pm 1,\pm 2,\pm 3..... \\ 2\qquad \qquad ;\qquad otherwise \end{cases}$$ and $$g\left( x \right) =\begin{cases} { x }^{ 2 }+1\qquad ;\qquad x\neq 0 \\ 4\qquad \qquad ;\qquad x=0 \end{cases}.$$ 
Then $$\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)\right)} $$ is
  • $$1$$
  • $$4$$
  • $$5$$
  • non-existent
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers