Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 4 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 4
lf
[
x
]
denotes the greatest integer contained in
x
,
then for 4
<
x
<
5
,
d
d
x
{
[
x
]
}
=
Report Question
0%
[
x
−
4
,
5
]
0%
[
x
]
0%
0
0%
1
Explanation
[
]
denote greatest integer function ,i.e
[
n
+
f
]
=
n
,
where
n
=
i
n
t
e
g
e
r
and
f
=
f
r
a
c
t
i
o
n
,
If
4
<
x
<
5
, then
[
x
]
=
4
=
constant
Hence
d
d
x
{
[
x
]
}
=
d
d
x
(
4
)
=
0
For the function
f
(
x
)
=
x
100
100
+
x
99
99
+
.
.
.
.
.
.
.
.
.
.
.
+
x
2
2
+
x
+
1
,
f
′
(
1
)
=
Report Question
0%
x
100
0%
100
0%
101
0%
None of these
Explanation
G
i
v
e
n
:
d
d
x
(
x
n
)
=
n
x
n
−
1
∴
f
o
r
f
(
x
)
=
x
100
100
+
x
99
99
+
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
+
x
2
2
+
1
f
′
(
x
)
=
100
x
99
100
+
99
x
98
99
+
.
.
.
.
.
.
.
.
.
.
.
.
.
+
2
x
2
+
1
H
e
r
e
f
′
(
1
)
=
1
+
1
+
.
.
.
.
.
.
.
.
.
t
o
100
t
e
r
m
=
100
H
e
n
c
e
f
(
x
)
=
x
100
100
+
x
99
99
+
.
.
.
.
.
.
.
.
.
.
.
+
x
2
2
+
x
+
1
=
100
lf
f
(
x
)
=
{
1
−
cos
x
x
x
≠
0
0
x
=
0
,
then
f
′
(
0
)
=
Report Question
0%
1
2
0%
1
4
0%
3
4
0%
Does not exist
Explanation
Using fundamental theorem,
f
′
(
0
)
=
lim
h
→
0
f
(
0
+
h
)
−
f
(
0
)
h
=
lim
h
→
0
1
−
cos
h
h
−
0
h
=
lim
h
→
0
1
−
cos
h
h
2
=
lim
h
→
0
1
2
.
sin
2
h
2
h
2
4
=
1
2
Derivative of which function is
f
′
(
x
)
=
x
sin
x
?
Report Question
0%
x
sin
x
+
cos
x
0%
x
cos
x
+
sin
x
0%
x
sin
(
π
2
−
x
)
+
cos
(
π
2
−
x
)
0%
x
cos
(
π
2
−
x
)
+
sin
(
π
2
−
x
)
Explanation
We know
d
d
x
(
f
.
g
)
=
d
f
d
x
.
g
+
d
g
d
x
.
f
⇒
d
d
x
(
x
.
s
i
n
(
x
)
)
=
d
(
x
)
d
x
.
s
i
n
(
x
)
+
d
(
s
i
n
(
x
)
)
d
x
.
x
⇒
1
×
s
i
n
(
x
)
+
c
o
s
(
x
)
.
x
=
x
.
c
o
s
(
x
)
+
s
i
n
(
x
)
We know that
c
o
s
(
x
)
=
s
i
n
(
π
2
−
x
)
s
i
n
(
x
)
=
c
o
s
(
π
2
−
x
)
⇒
x
.
s
i
n
(
(
π
2
−
x
)
+
c
o
s
(
π
2
−
x
)
Both B and C are correct
If
y
=
x
−
1
2
+
log
5
x
+
sin
x
cos
x
+
2
x
, then find
d
y
d
x
Report Question
0%
−
1
2
x
−
3
/
2
+
1
x
log
e
5
+
sec
2
x
+
2
x
log
2
0%
1
2
x
−
3
/
2
+
1
x
log
e
5
+
sec
2
x
+
2
x
log
2
0%
−
3
2
x
−
3
/
2
+
1
x
log
e
5
+
sec
2
x
+
2
x
log
2
0%
−
1
2
x
−
3
/
2
+
1
x
log
e
5
+
cos
2
x
+
2
x
log
2
Explanation
Here, we have function
y
=
x
−
1
/
2
+
log
5
x
+
tan
x
+
2
x
On differentiating w.r.t x, we get
d
y
d
x
=
d
d
x
(
x
)
−
1
/
2
+
d
d
x
(
log
5
x
)
+
d
d
x
tan
x
+
d
d
x
(
2
x
)
=
−
1
2
(
x
)
−
1
/
2
−
1
+
1
x
log
e
5
+
sec
2
x
+
2
x
log
2
=
−
1
2
x
−
3
/
2
+
1
x
log
e
5
+
sec
2
x
+
2
x
log
2
If
y
=
5
3
−
x
2
+
(
3
−
x
2
)
5
, then
d
y
d
x
=
Report Question
0%
−
2
x
{
5
3
−
x
2
⋅
log
e
5
+
5
(
3
−
x
2
)
4
}
0%
−
x
{
5
3
−
x
2
⋅
log
e
5
+
5
(
3
−
x
2
)
4
}
0%
−
2
x
{
5
3
−
x
2
⋅
log
e
5
+
(
3
−
x
2
)
4
}
0%
−
2
x
{
5
3
−
x
2
+
5
(
3
−
x
2
)
4
}
Explanation
d
d
x
(
5
3
−
x
2
+
(
3
−
x
2
)
5
)
=
5
3
−
x
2
log
e
5
d
d
x
(
3
−
x
2
)
+
5
(
3
−
x
2
)
4
d
d
x
(
3
−
x
2
)
=
5
3
−
x
2
log
e
5
(
−
2
x
)
+
5
(
3
−
x
2
)
4
(
−
2
x
)
=
−
2
x
(
5
3
−
x
2
log
e
5
+
5
(
3
−
x
2
)
)
If
y
=
log
3
x
+
3
log
e
x
+
2
tan
x
, then
d
y
d
x
=
Report Question
0%
1
x
log
e
3
+
3
x
+
2
sec
2
x
0%
1
x
log
e
3
+
3
x
+
sec
2
x
0%
1
log
e
3
+
3
x
+
2
sec
2
x
0%
1
x
log
e
3
−
3
x
+
2
sec
2
x
Explanation
d
d
x
(
log
3
x
+
3
log
e
x
+
2
tan
x
)
=
d
d
x
(
log
e
x
log
3
+
3
log
e
x
+
2
tan
x
)
=
1
x
log
e
3
+
3
x
+
2
sec
2
x
If
y
=
x
2
+
s
i
n
−
1
x
+
l
o
g
e
x
, find
d
y
d
x
Report Question
0%
d
y
d
x
=
2
x
+
1
√
1
−
x
2
+
1
x
0%
d
y
d
x
=
x
+
1
√
1
−
x
2
+
1
x
0%
d
y
d
x
=
2
x
+
1
√
1
−
x
2
−
1
x
0%
d
y
d
x
=
2
x
−
1
√
1
−
x
2
+
1
x
Explanation
y
=
x
2
+
s
i
n
−
1
+
l
o
g
e
x
On differentiating, we get
d
y
d
x
=
d
d
x
(
x
2
)
+
d
d
x
s
i
n
−
1
x
)
+
d
d
x
(
l
o
g
e
x
)
or
d
y
d
x
=
2
(
x
)
2
−
1
+
1
√
1
−
x
2
+
d
d
x
(
l
o
g
e
x
)
d
y
d
x
=
2
x
+
1
√
1
−
x
2
+
1
x
If
y
=
e
x
log
a
+
e
a
log
x
+
e
a
log
a
, then
d
y
d
x
=
Report Question
0%
a
x
log
a
+
x
a
−
1
0%
a
x
log
a
+
a
x
0%
a
x
log
a
+
a
x
a
−
1
0%
a
x
log
a
+
a
x
a
Explanation
Let
y
=
e
x
l
o
g
a
+
e
a
l
o
g
x
+
e
a
l
o
g
a
=
e
log
e
a
x
+
e
log
e
x
a
+
e
log
e
a
a
=
a
x
+
x
a
+
a
a
......... Since
e
log
e
x
=
x
d
y
d
x
=
d
d
x
(
a
x
+
x
a
+
a
a
)
=
a
x
log
a
+
a
.
x
a
−
1
If
y
=
|
cos
x
|
+
|
sin
x
|
, then
d
y
d
x
at
x
=
2
π
3
is
Report Question
0%
1
2
(
√
3
+
1
)
0%
2
(
√
3
−
1
)
0%
1
2
(
√
3
−
1
)
0%
none of these
Explanation
d
y
d
x
=
d
d
x
(
|
c
o
s
x
|
+
|
s
i
n
x
|
)
=
−
sin
x
+
cos
x
at
x
=
2
π
3
=
|
−
sin
2
π
3
|
+
|
cos
2
π
3
|
=
√
3
2
−
1
2
=
1
2
(
√
3
−
1
)
Find the derivative of
sec
−
1
(
x
+
1
x
−
1
)
+
sin
−
1
(
x
−
1
x
+
1
)
Report Question
0%
0
0%
1
0%
−
1
0%
x
+
1
x
−
1
Explanation
Let
y
=
sec
−
1
(
x
+
1
x
−
1
)
+
sin
−
1
(
x
−
1
x
+
1
)
y
=
cos
−
1
(
x
−
1
x
+
1
)
+
sin
−
1
(
x
−
1
x
+
1
)
=
π
2
∴
d
y
d
x
=
d
d
x
(
π
2
)
=
0
∵
sin
−
1
θ
+
cos
−
1
θ
=
π
2
If
y
=
log
10
x
+
log
x
10
+
log
x
x
+
log
10
10
, then
d
y
d
x
=
Report Question
0%
1
x
log
e
10
−
log
e
10
x
(
log
e
x
)
2
0%
1
log
e
10
−
log
e
10
x
(
log
e
x
)
2
0%
1
x
log
e
10
−
log
e
10
x
2
(
log
e
x
)
2
0%
None of these
Explanation
d
d
x
(
log
10
x
+
log
x
10
+
log
x
x
+
log
10
10
)
=
1
x
log
e
10
+
(
−
log
e
10
(
1
x
)
)
(
log
e
x
)
2
=
1
x
log
e
10
−
log
e
10
x
(
log
e
x
)
2
lim
x
→
0
(
x
−
3
sin
3
x
+
a
x
−
2
+
b
)
exists and is equal to 0, then
Report Question
0%
a
=
−
3
and
b
=
9
2
0%
a
=
3
and
b
=
9
2
0%
a
=
−
3
and
b
=
−
9
2
0%
a
=
3
and
b
=
−
9
2
Explanation
lim
x
→
∞
sin
3
x
x
3
+
a
x
2
+
b
=
lim
x
→
0
sin
3
x
+
a
x
+
b
x
3
x
3
=
lim
x
→
0
3
sin
3
x
3
x
+
a
+
b
x
2
x
2
For existence,
(
3
+
a
)
=
0
or
a
=
−
3
∴
L
=
lim
x
→
0
sin
3
x
−
3
x
+
b
x
3
x
3
⇒
27
lim
t
→
0
sin
t
−
t
t
3
+
b
=
0
.
.
.
.
.
.
.
.
(
3
x
=
t
)
The left hand side reduces to
0
0
form by substituting the limit
Then, using L'Hospital's rule
⇒
27
lim
t
→
0
cos
t
−
1
3
t
2
+
b
=
0
Again, applying
L'Hospital's rule
⇒
27
lim
t
→
0
−
sin
t
6
t
+
b
=
0
⇒
−
27
6
+
b
=
0
or
b
=
9
2
If
y
=
l
o
g
x
3
+
3
s
i
n
−
1
x
+
k
x
2
, then find
d
y
d
x
Report Question
0%
3
⋅
1
x
+
3
⋅
1
√
1
−
x
2
+
k
(
2
x
)
0%
3
⋅
1
x
3
+
3
⋅
1
√
1
−
x
2
+
k
(
2
x
)
0%
3
⋅
1
x
−
3
⋅
1
√
1
−
x
2
+
k
(
2
x
)
0%
3
⋅
1
x
+
3
⋅
1
√
1
−
x
2
+
2
x
Explanation
Here,
y
=
log
x
3
+
3
sin
−
1
x
+
k
x
2
On differentiating we get
d
y
d
x
=
d
d
x
[
log
x
3
]
+
d
d
x
[
3
sin
−
1
x
]
+
d
d
x
[
k
x
2
]
=
3
d
d
x
[
log
x
]
+
3
d
d
x
(
sin
−
1
x
)
+
k
d
d
x
(
x
2
)
=
3
⋅
1
x
+
3
⋅
1
√
1
−
x
2
+
k
(
2
x
)
The value of
lim
x
→
∞
cot
−
1
(
x
−
a
log
a
x
)
sec
−
1
a
x
log
x
a
for
(
a
>
1
)
is equal to?
Report Question
0%
1
0%
0
0%
π
2
0%
Does not exist
Explanation
L
=
lim
x
→
∞
cot
−
1
(
x
−
a
log
a
x
)
sec
−
1
a
x
log
x
a
=
lim
x
→
∞
cot
−
1
log
x
log
a
.
x
a
sec
−
1
a
x
log
a
log
x
=
lim
x
→
∞
cot
−
1
1
a
log
a
.
x
a
sec
−
1
a
x
log
2
a
.
x
1
=
cot
−
1
0
sec
−
1
∞
=
π
/
2
π
/
2
=
1
Note: L-Hospital's rule has been used in step two in both numerator and denominator alone.
The value of
lim
x
→
π
/
6
2
sin
2
x
+
sin
x
−
1
2
sin
2
x
−
3
sin
x
+
1
Report Question
0%
3
0%
−
3
0%
6
0%
0
Explanation
We have
lim
x
→
π
/
6
2
s
i
n
2
x
+
s
i
n
x
−
1
2
s
i
n
2
x
−
3
s
i
n
x
+
1
=
lim
x
→
π
/
6
(
2
s
i
n
x
−
1
)
(
s
i
n
x
+
1
)
(
2
s
i
n
x
−
1
)
(
s
i
n
x
−
1
)
=
lim
x
→
π
/
6
s
i
n
x
+
1
s
i
n
x
−
1
=
−
3
If
y
=
s
e
c
−
1
(
√
x
+
1
√
x
−
1
)
+
sin
−
1
(
√
x
−
1
√
x
+
1
)
, then
d
y
d
x
equals
Report Question
0%
1
0%
0
0%
√
x
+
1
√
x
−
1
0%
√
x
−
1
√
x
+
1
Explanation
y
=
s
e
c
−
1
(
√
x
+
1
√
x
−
1
)
+
sin
−
1
(
√
x
−
1
√
x
+
1
)
y
=
cos
−
1
(
√
x
−
1
√
x
+
1
)
+
sin
−
1
(
√
x
−
1
√
x
+
1
)
=
π
2
.............
∵
sin
−
1
θ
+
cos
−
1
θ
=
π
2
∴
d
y
d
x
=
d
d
x
(
π
2
)
=
0
If
2
x
+
2
y
=
2
x
+
y
, then
d
y
d
x
has the value equal to
Report Question
0%
−
2
y
2
x
0%
1
1
−
2
x
0%
1
−
2
y
0%
2
x
(
1
−
2
y
)
2
y
(
2
x
−
1
)
Explanation
2
x
+
2
y
=
2
x
+
y
Differentiating both the sides
⇒
d
d
x
(
2
x
+
2
y
)
=
d
d
x
(
2
x
+
y
)
⇒
2
x
log
2
+
2
y
log
2
d
y
d
x
=
2
x
+
y
log
2
(
1
+
d
y
d
x
)
⇒
log
2
(
2
x
+
2
y
d
y
d
x
)
=
log
2
(
2
x
+
y
+
2
x
+
y
d
y
d
x
)
⇒
(
2
y
−
2
x
+
y
)
d
y
d
x
=
2
x
+
y
−
2
x
⇒
d
y
d
x
=
2
x
2
y
−
2
x
2
y
−
2
x
2
y
=
2
x
(
2
y
−
1
)
2
y
(
1
−
2
x
)
=
2
x
(
1
−
2
y
)
2
y
(
2
x
−
1
)
If
f
′
(
x
)
=
sin
x
+
sin
4
x
⋅
cos
x
, then
f
′
(
2
x
2
+
π
2
)
is
Report Question
0%
4
x
{
cos
(
2
x
2
)
−
s
i
n
8
x
2
⋅
sin
2
x
2
}
0%
4
x
{
cos
(
2
x
2
)
+
sin
8
x
2
⋅
sin
2
x
2
}
0%
{
cos
(
2
x
2
)
−
sin
8
x
⋅
sin
2
x
2
}
0%
none of the above
Explanation
f
′
(
x
)
=
sin
x
+
sin
4
x
⋅
cos
x
f
′
(
2
x
2
+
π
2
)
=
d
d
x
(
2
x
2
+
π
2
)
[
sin
(
2
x
2
+
π
2
)
+
sin
4
(
2
x
2
+
π
2
)
.
cos
(
2
x
2
+
π
2
)
]
=
4
x
[
cos
2
x
2
−
sin
8
x
2
.
sin
2
x
2
]
The solution set of
f
′
(
x
)
>
g
′
(
x
)
where
f
(
x
)
=
1
2
(
5
2
x
+
1
)
&
g
(
x
)
=
5
x
+
4
x
(
ln
5
)
is
Report Question
0%
x
>
1
0%
0
<
x
<
1
0%
x
≤
0
0%
x
>
0
Explanation
Given,
f
(
x
)
=
1
2
(
5
2
x
+
1
)
f
′
(
x
)
=
5
2
x
+
1
×
log
5
g
′
(
x
)
=
5
x
l
log
5
+
4
ln
5
=
ln
5
(
5
x
+
4
)
f
′
(
x
)
>
g
′
(
x
)
=>
5
×
5
2
x
>
(
5
x
+
4
)
Let
t
=
5
x
=>
5
t
2
−
t
−
4
>
0
=>
(
t
−
1
)
(
t
+
4
5
)
>
0
=>
t
>
1
or
t
>
−
4
5
=>
5
x
>
5
0
=>
x
>
0
so,
x
>
0
f
:
R
→
R
and
f
(
x
)
=
x
(
x
4
+
1
)
(
x
+
1
)
+
x
4
+
2
x
2
+
x
+
1
, then
f
(
x
)
is
Report Question
0%
one-one ito
0%
many-one onto
0%
one-one onto
0%
many-one into
Explanation
f
(
x
)
=
x
(
x
4
+
1
)
(
x
+
1
)
+
x
4
+
2
x
2
+
x
+
1
=
x
(
x
4
+
1
)
(
x
+
1
)
+
(
x
4
+
1
)
+
1
x
2
+
x
+
1
=
(
x
4
+
1
)
(
x
2
+
x
+
1
)
+
1
x
2
+
x
+
1
=
(
x
4
+
1
)
+
1
x
2
+
x
+
1
f
′
(
x
)
=
4
x
3
−
2
x
+
1
(
x
2
+
x
+
1
)
2
=
not always positive or negative
Thus,
f
is many one.
Also range and co-domain of
f
are not same,
Hence is many-one into function
Suppose the function
f
(
x
)
−
f
(
2
x
)
has the derivative
5
at
x
=
1
and derivative
7
at
x
=
2
.The derivative of the function
f
(
x
)
−
f
(
4
x
)
at
x
=
1
, has the value equal to
Report Question
0%
19
0%
9
0%
17
0%
14
Which one of the following statements is true?
Report Question
0%
If
lim
x
→
c
f
(
x
)
.
g
(
x
)
and
lim
x
→
c
f
(
x
)
exist, then
lim
x
→
c
g
(
x
)
exists.
0%
If
lim
x
→
c
f
(
x
)
.
g
(
x
)
exists, then
lim
x
→
c
f
(
x
)
and
lim
x
→
c
g
(
x
)
exist.
0%
If
lim
x
→
c
f
(
x
)
+
g
(
x
)
and
lim
x
→
c
f
(
x
)
exist, then
lim
x
→
c
g
(
x
)
also exists.
0%
If
lim
x
→
c
f
(
x
)
+
g
(
x
)
exists, then
lim
x
→
c
f
(
x
)
and
lim
x
→
c
g
(
x
)
also exist.
Explanation
For option A and B, take
f
(
x
)
=
x
and
g
(
x
)
=
1
x
.
Limit of
g
(
x
)
doesn't exist at
x
=
0
, but for
lim
x
→
0
f
(
x
)
.
g
(
x
)
and
f
(
x
)
=
x
limit exists.
For option C,
Lets assume
h
(
x
)
=
f
(
x
)
+
g
(
x
)
,
Take limit on both sides as
x
→
c
lim
x
→
c
h
(
x
)
=
lim
x
→
c
(
f
(
x
)
+
g
(
x
)
)
And it is given that
lim
x
→
c
f
(
x
)
exists.
Using sum law of limits:
If
lim
x
→
c
F
(
x
)
and
lim
x
→
c
G
(
x
)
exists, then
lim
x
→
c
(
F
(
x
)
±
G
(
x
)
)
also exists.
∴
lim
x
→
c
(
h
(
x
)
−
f
(
x
)
)
=
lim
x
→
c
(
f
(
x
)
+
g
(
x
)
−
f
(
x
)
)
=
lim
x
→
c
g
(
x
)
exists.
For option D, take
f
(
x
)
=
−
c
o
s
x
x
2
and
g
(
x
)
=
1
x
2
.
Limit of
g
(
x
)
and
f
(
x
)
=
−
c
o
s
x
x
2
doesn't exist at
x
=
0
, but for
lim
x
→
0
f
(
x
)
+
g
(
x
)
limit exists.
Hence option C.
If
y
=
x
a
+
x
b
+
x
a
+
x
b
+
.
.
.
.
.
∞
, then
d
y
d
x
=
Report Question
0%
a
a
b
+
2
a
y
0%
b
a
b
+
2
b
y
0%
a
a
b
+
2
b
y
0%
b
a
b
+
2
a
y
Explanation
y
=
x
a
+
x
b
+
y
⇒
y
=
x
(
b
+
y
)
a
b
+
a
y
+
x
⇒
a
b
y
+
a
y
2
+
x
y
=
b
x
+
x
y
⇒
a
b
y
+
a
y
2
=
b
x
Differentiating both sides w.r.t
x
⇒
(
a
b
+
2
a
y
)
d
y
d
x
=
b
∴
d
y
d
x
=
b
a
b
+
2
a
y
Given :
f
(
x
)
=
4
x
3
−
6
x
2
cos
2
a
+
3
x
sin
2
a
.
sin
6
a
+
√
ln
(
2
a
−
a
2
)
then
Report Question
0%
f
(
x
)
is not defined at
x
=
1
2
0%
f
′
(
1
2
)
<
0
0%
f
′
(
x
)
is not defined at
x
=
1
2
0%
f
′
(
1
2
)
>
0
Explanation
f
′
(
x
)
=
12
x
2
−
12
x
c
o
s
2
a
+
3
s
i
n
2
a
.
s
i
n
6
a
+
0
f
′
(
1
/
2
)
=
12
4
−
12
2
c
o
s
2
a
+
3
s
i
n
2
a
.
s
i
n
6
a
=
3
−
6
c
o
s
2
a
+
1.5
(
c
o
s
4
a
−
c
o
s
8
a
)
So, it will alwyas be greater than
0
Let
f
(
x
1
+
x
2
+
.
.
.
+
x
n
n
)
=
f
(
x
1
)
+
f
(
x
2
)
+
.
.
.
+
f
(
x
n
)
n
where all
x
i
∈
R
are independent to each other and
n
∈
N
. if
f
(
x
)
is differentiable and
f
′
(
0
)
=
a
,
f
(
0
)
=
b
and
f
′
(
x
)
is equal to
Report Question
0%
a
0%
0
0%
b
0%
None of these
Explanation
Differentiating the given equation w.r.t.
x
1
,
we get
1
n
f
′
(
x
1
+
x
2
+
.
.
.
+
x
n
n
)
=
f
′
(
x
1
)
n
[
Since all
x
′
i
s
are independent to each other,
∴
d
x
i
d
x
j
=
0
if
i
≠
j
and
d
x
i
d
x
j
=
1
if
(
i
=
j
)
]
On putting
x
1
=
x
2
=
.
.
.
=
x
n
−
1
=
0
and
x
n
=
x
,
we get
f
′
(
x
n
)
=
f
′
(
0
)
=
a
.
On integrating, we get
n
f
′
(
x
n
)
=
a
x
+
c
Since
f
(
0
)
=
b
,
we have
c
=
n
b
∴
n
f
′
(
x
n
)
=
a
x
+
n
b
⇒
n
f
′
(
x
)
=
n
a
x
+
n
b
⇒
f
(
x
)
=
a
x
+
b
.
∴
f
′
(
x
)
=
a
,
∀
x
∈
R
If
5
f
(
x
)
+
3
f
(
1
x
)
=
x
+
2
and
y
=
x
f
(
x
)
then
(
d
y
d
x
)
x
=
1
is equal to ?
Report Question
0%
14
0%
7
8
0%
1
0%
none of these
Explanation
5
f
(
x
)
+
3
f
(
1
x
)
=
x
+
2
⇒
(
1
)
Replace
x
by
1
x
⇒
5
f
(
1
x
)
+
3
f
(
x
)
=
1
x
+
2
⇒
(
2
)
⇒
5
×
(
1
)
−
3
×
(
2
)
⇒
16
f
(
x
)
=
5
x
−
3
x
+
4
=
5
x
2
+
4
x
−
3
x
∴
y
=
x
f
(
x
)
=
5
x
2
+
4
x
−
3
16
⇒
d
y
d
x
=
10
x
+
4
16
∴
(
d
y
d
x
)
x
=
1
=
10
+
4
16
=
7
8
If
f
(
x
)
=
√
1
+
√
x
,
x
>
0
,
then
f
(
x
)
⋅
f
′
(
x
)
is equal to
Report Question
0%
1
2
√
x
0%
1
2
0%
1
4
√
x
0%
2
√
x
+
1
4
√
x
Explanation
Let
y
=
f
(
x
)
=
√
1
+
√
x
Then,
y
2
=
1
+
√
x
Differentiating w.r.t. x, we get,
2
y
d
y
d
x
=
1
2
√
x
⇒
f
(
x
)
f
′
(
x
)
=
1
4
√
x
y
=
√
sin
x
+
√
sin
x
+
√
sin
x
+
−
∞
then
d
y
d
x
equals:
(
sin
x
>
0
)
Report Question
0%
cos
x
2
y
−
1
0%
y
2
tan
x
+
y
sec
x
0%
1
√
1
+
4
sin
x
0%
2
cos
x
sin
x
+
2
y
Explanation
y
=
√
sin
x
√
sin
x
√
sin
x
+
−
∞
Taking square on both the sides, we get
y
2
=
sin
x
+
√
sin
x
√
sin
x
√
sin
x
+
−
∞
y
2
=
sin
x
+
y
............ Since
y
=
√
sin
x
√
sin
x
√
sin
x
+
−
∞
2
y
d
y
d
x
=
cos
x
+
d
y
d
x
d
y
d
x
=
cos
x
2
y
−
1
f
(
x
)
=
{
sin
x
;
x
≠
n
π
,
n
=
0
,
±
1
,
±
2
,
±
3.....
2
;
o
t
h
e
r
w
i
s
e
and
g
(
x
)
=
{
x
2
+
1
;
x
≠
0
4
;
x
=
0
.
Then
lim
x
→
0
g
(
f
(
x
)
)
is
Report Question
0%
1
0%
4
0%
5
0%
non-existent
Explanation
lim
x
→
0
g
(
f
(
x
)
)
=
g
(
f
(
0
)
)
=
g
(
2
)
=
2
2
+
1
=
5
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page