Processing math: 0%

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 5 - MCQExams.com

lim is

  • 0
  • \displaystyle \frac{1}{32}
  • \infty
  • \displaystyle \frac{1}{8}
If P(x) is a polynomial such that P\left ( x^{2}+1 \right )=\left \{ P\left ( x^{2} \right ) \right \}^{2}+1 and P(0)=0 then P^{'}(0) is equal to
  • 1
  • 0
  • -1
  • none of these
Let f\left ( x \right )=\begin{cases}\sin x, x\neq n\pi                     \\ 2,  x=n\pi \end{cases}, where n\epsilon \mathbb{Z} and
g\left ( x \right )=\begin{cases}x^{2}+1, x\neq 2 \\               3, x=2 \end{cases}.
Then \displaystyle \lim_{x\to 0}g\left ( f\left ( x \right ) \right ) is
  • 0
  • 1
  • 3
  • none of these
\displaystyle \frac{d}{dx}(\log_{e}\left ( \frac{1+x}{1-x} \right )^{1/4}-\frac{1}{2}\tan^{-1}x.)
  • \displaystyle \frac{x^{2}}{1-x^{4}}.
  • \displaystyle \frac{x^{3}}{1-x^{4}}.
  • \displaystyle \frac{x^{4}}{1-x^{4}}.
  • -\displaystyle \frac{x^{2}}{1-x^{4}}.
Differentiate \displaystyle \tan x^{n}+\tan ^{n}x-\tan ^{-1}\frac{a+x^{n}}{1-ax^{n}}.
  • \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [\dfrac{ 1}{\left ( 1-x^{2n} \right ) }\right ]nx^{n-1}
  • \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [ \dfrac{1}{\left ( 1+x^{2n} \right )} \right ]nx^{n}
  • \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n}x.\sec^{2}x-\left [\dfrac{ 1}{\left ( 1+x^{2n} \right )} \right ]nx^{n-1}
  • \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [ \dfrac{1}{\left ( 1+x^{2n} \right )} \right ]nx^{n-1}
\displaystyle \frac{d}{dx}(\tan ^{-1}\frac{\sin x+\cos x}{\cos x-\sin x})
  • -1
  • -2
  • 1
  • 2
\displaystyle \frac{d}{dx}\tan ^{-1}\left(\frac{a \cos x-b\sin x}{b\cos x+a\sin x}\right)
  • -1
  • -2
  • 1
  • 2
Differentiate the following: \displaystyle \cot ^{-1}\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{\left ( 1+\sin x \right )}-\sqrt{\left ( 1-\sin x \right )}}
  • \displaystyle \frac{1}{2}.
  • \displaystyle \frac{-1}{2}.
  • \displaystyle \frac{1}{4}.
  • \displaystyle \frac{-1}{4}.
\displaystyle \dfrac{d}{dx}\tan ^{-1}\left(\dfrac{\cos x}{1+\sin x}\right)
  • -\displaystyle \dfrac{1}{2}
  • -\displaystyle \dfrac{1}{4}
  • -\displaystyle \dfrac{1}{8}
  • \displaystyle \dfrac{1}{2}
Let \displaystyle f\left ( x \right ) be defined by \displaystyle f\left ( x \right )=\left\{\begin{matrix}\sin 2x & \text{if } 0< x\leq \dfrac{\pi}6\\ ax+b& \text{if } \dfrac{\pi}6< x\leq 1\end{matrix}\right. . The values of a and b such that \displaystyle f and \displaystyle {f}' are continuous, are
  • \displaystyle a=1,b=\dfrac1{\sqrt{2}}+\dfrac{\pi}6
  • \displaystyle a=\dfrac1{\sqrt{2}},b=\dfrac1{\sqrt{2}}
  • \displaystyle a=1,b=\dfrac{\sqrt{3}}2-\dfrac{\pi}6
  • None of these
A polynomial f(x) leaves remainder 15 when divided by (x-3) and (2x+1) when divided by (x-1)^2. When f is divided by (x-3)(x-1)^2, the remainder is
  • 2x^2+2x+3
  • 2x^2-2x-3
  • 2x^2-2x+3
  • none of these
If f\left( x \right) is a polynomial of degree n(>2) and f\left( x \right) =f\left( k-x \right) ,( where k is a fixed real number), then degree of f'(x) is
  • n
  • n-1
  • n-2
  • None of these
If 2f\left( \sin { x }  \right) +f\left( \cos { x }  \right) =x, then \displaystyle \frac { d }{ dx } f\left( x \right) is
  • \sin{x}+\cos{x}
  • 2
  • \displaystyle \frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  }
  • none of these
If for all x,y the function f is defined by f\left( x \right)+f\left( y \right)+f\left( x \right).f\left( y \right)=1 and f\left( x \right)>0, then
  • f'\left( x \right) does not exist
  • f'\left( x \right) =0 for all x
  • f'\left( 0 \right) <f'\left( 1 \right)
  • None of these
If the functions \displaystyle f\left ( x \right )=\sin \left ( x+a \right ) and \displaystyle g\left ( x \right )=b\sin x+c\cos x satisfy \displaystyle f\left ( 0 \right )=g\left ( 0 \right ) and \displaystyle {f}'\left ( 0 \right )={g}'\left ( 0 \right ) then
  • \displaystyle b=\dfrac{\pi}2
  • \displaystyle b=\cos a
  • \displaystyle c=\sin a
  • \displaystyle c=\cos a
If \displaystyle {f}'\left ( x \right )=g\left ( x \right ) and \displaystyle {g}'\left ( x \right )=-f\left ( x \right ) and \displaystyle f\left ( 2 \right )=4={f}'\left ( 2 \right ) then \displaystyle f^{2}\left ( 16 \right )+g^{2}\left ( 16 \right ) is
  • 16
  • 32
  • 64
  • None of these
Let f\left( x \right)=\sqrt { x-1 } +\sqrt { x+24-10\sqrt { x-1 }  } ;1<x<26 be a real valued function. Then f'(x) for 1<x<26 is
  • 0
  • \displaystyle \frac { 1 }{ \sqrt { x-1 }  }
  • 2\sqrt { x-1 } -5
  • none of these
If \displaystyle y=\sec ^{ -1 }{ \left( \frac { x+1 }{ x-1 }  \right)  } +\sin ^{ -1 }{ \left( \frac { x-1 }{ x+1 }  \right)  }   then \displaystyle \frac{dy}{dx} is equal to
  • 0
  • \displaystyle x+1
  • 1
  • -1
A curve passing through the point (1,1) is such that the intercept made by a tangent to it on x-axis is three times the x co-ordinate of the point of tangency, then the equation of the curve is:
  • \displaystyle y=\frac{1}{x^{2}}
  • \displaystyle y=\sqrt{x}
  • \displaystyle y=\frac{1}{\sqrt{x}}
  • none
If \displaystyle \lim_{x\rightarrow 0}(f(x)\:g(x)) exists for any functions f and g then
  • \displaystyle \lim_{x\rightarrow a}f(x) and \displaystyle \lim_{x\rightarrow a}g(x) exist
  • \displaystyle \lim_{x\rightarrow a}f(x) exist but \displaystyle \lim_{x\rightarrow a}g(x) may not exist
  • \displaystyle \lim_{x\rightarrow a}f(x) may not exist but \displaystyle \lim_{x\rightarrow a}g(x) exist
  • \displaystyle \lim_{x\rightarrow a}f(x) and \displaystyle \lim_{x\rightarrow a}g(x) may not exist
If for a non-zero x, the function f(x) satisfies the equation \displaystyle af\left( x \right)+bf\left( \frac { 1 }{ x }  \right) =\frac { 1 }{ x } -5\left( a\neq b \right) then f'(x) is equal to
  • \displaystyle \frac { 1 }{ { b }^{ 2 }-{ a }^{ 2 } } \left( \frac { a }{ { x }^{ 2 } } +b \right)
  • \displaystyle \frac { 1 }{ { a }^{ 2 }-{ b }^{ 2 } } \left( \frac { a }{ { x }^{ 2 } } +b \right)
  • \displaystyle \frac { 1 }{ { a }^{ 2 }-{ b }^{ 2 } } \left( \frac { a }{ { x }^{ 2 } } -b \right)
  • none of these
If { S }_{ n } denotes the sum of n terms of g.p. whose common ratio is r, then \displaystyle \left( r-1 \right) \frac { d{ S }_{ n } }{ dr } is equal to
  • \left( n-1 \right) { S }_{ n }+n{ S }_{ n-1 }
  • \left( n-1 \right) { S }_{ n }-n{ S }_{ n-1 }
  • \left( n-1 \right) { S }_{ n }
  • None of these
Let y = \sqrt { x + \sqrt { x + \sqrt { x + ......\infty  }  }  } then \displaystyle\frac { dy }{ dx }
  • \displaystyle\frac { 1 }{ 2y-1 }
  • \displaystyle\frac { x }{ x-2y }
  • \displaystyle\frac { 1 }{ \sqrt { 1+4x } }
  • \displaystyle\frac { y }{ 2x+y }
\underset{x\rightarrow0}{lim}\displaystyle\frac{1-cos^{3}x+sin^{3}x+\ell n(1+x^{3})+\ell n(1+cos\,\,x)}{x^{2}-1+2\,cos^{2}x+tan^{4}x+sin^{3}x} is equal to -
  • \,\,\displaystyle\frac{3}{4}
  • \,\,ln2
  • \,\,\displaystyle\frac{ln2}{4}
  • \,\,3/2

\displaystyle f^{ ' }\left( x \right) =g\left( x \right) and \displaystyle g^{ ' }\left( x \right) =-f\left( x \right) for all real x and \displaystyle f\left( 5 \right) =2=f^{ ' }\left( 5 \right) then \displaystyle f^{ 2 }\left( 10 \right) +g^{ 2 }\left( 10 \right) is -

  • 2
  • 4
  • 8
  • None of these
\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{\sqrt{x}-x}{1+x^{3/2}} \right ) \right ) equals \displaystyle (for x\geq 0)
  • \displaystyle \frac{1}{2\sqrt{x}(1+x)}-\frac{1}{1+x^{2}}
  • \displaystyle \frac{1}{2\sqrt{x}(1+x)}+\frac{1}{1+x^{2}}
  • \displaystyle \frac{1}{1+x}-\frac{1}{1+x^{2}}
  • None of these
Evaluate \displaystyle \lim_{n\rightarrow \infty }\left [ \frac{n!}{n^{n}} \right ]^{1/n}.
  • \displaystyle\frac{1}{e}
  • \displaystyle\frac{1}{t}
  • \displaystyle\frac{1}{n}
  • none\ of\ above
\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{a-x}{1+ax} \right ) \right ) equals if ax > -1
  • \displaystyle \frac{a}{1+x^{2}}
  • \displaystyle \frac{1}{1+x^{2}}
  • \displaystyle- \frac{a}{1+x^{2}}
  • \displaystyle -\frac{1}{1+x^{2}}
If f(x) = \displaystyle \left | \cos x-\sin x \right | then \displaystyle f'\left ( \dfrac{\pi}4 \right ) is equal to-
  • \displaystyle \sqrt{2}
  • \displaystyle -\sqrt{2}
  • 0
  • Does\ not\ exist
If y = sec  x^0 then \displaystyle \frac{dy}{dx} =
  • sec x tan x
  • sec x^0 tan x^0
  • \displaystyle \frac{\pi}{180} sec x^0 tan x^0
  • \displaystyle \frac{180}{\pi} sec x^0 tan x^0
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers