Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 7 - MCQExams.com

Differentiate the following w.r.t. x.
tan3x.
  • (3tan2x)
  • (3tan2x)(sec2x)
  • (tan2x)(sec2x)
  • (tan2x)(sin2x)
Differentiate the following w.r.t. x.
tanx2.
  • sec2(x2)
  • sec2(x2)2x
  • sec2(x3)2x
  • tan2(x2)2x
Differentiate the following w.r.t. x.
sin2x.
  • 12xsin(3x).
  • 1xsin(2x).
  • 12xsin(2x).
  • 12xsin(4x).
limx0+((xcosx)x+(cosx)1lnx+(xsinx)x) is equal to
  • 2
  • 2+e
  • 2+1e
  • 3
If 8f(x)+6f(1x)=x+5 and y=x2f(x) ,then dydx at x=-1 is equal to
  • 0
  • 114
  • 114
  • None of these
If f:RR is a differentiable function such that f(x)>2f(x)xR and f(0)=1, then 
  • f(x) is increasing in (0,)
  • f(x) is decreasing in (0,)
  • f(x)>e2x in (0,)
  • f(x)<e2x in (0,)
dndxn[log(ax+b)] is equal to:
  • (1)nn!an(ax+b)n+1
  • (1)n1(n1)!an(ax+b)n+1
  • (1)n+1(n+1)!an1(ax+b)n+1
  • (1)n1(n1)!an(ax+b)n
limh0(h+1)2limh0(1+h)2/h is equal to
  • e1
  • e2
  • e2
  • e1
Function f(x)=|x2|2|x4|is discontinous at:
  • x=2,4
  • x=2
  • No where
  • Except x=2
Let Pn=nk=2(11k+1C2). If limxPn can be expressed as lowest rational in the form ab , then value of (a+b) is __________.
  • 4
  • 8
  • 10
  • 12
Given y=3x,dydx=
  • 3
  • 3x2
  • 3x2
  • 3x
Statement I: The function f(x) in the figure is differentiable at x = a
Statement II: The function f(x) continuous at x = a

1019713_fa884f00f0bf444a8a92598dbf0fe684.png
  • Both Statement I and Statement II are true and the Statement II is the correct explanation of the Statement I.
  • Both Statement I and Statement II are true and the Statement II is not the correct explanation of the Statement I.
  • Statement I is true but Statement II is false
  • Statement I is false but Statement II is true.
limxπ2tanx=
  • 0
  • does not exist
Suppose the function f(x)f(2x) has the derivative 5 at x=1 and derivative 7 at x=2. The derivative of the function f(x)f(4x) at x=1, has the value equal to?
  • 19
  • 9
  • 17
  • 14
limx0log(tan2x)(tan22x)=
  • 1
  • 2
  • 12
  • Does not exist
limnnCc(mn)x(1mn)nx equal to
  • Mxx !.em
  • Mxx !.em
  • 0
  • mx+1memx !
If [.] denotes, GIF , then ltx0([2018sin1xx]+[2020xtan1x])
  • 4038
  • 4037
  • 4036
  • 4039
The shortest distance between line yx=1 and curve x=y2 is
  • 34
  • 328
  • 822
  • 43
xn=(113)2(116)2(1110)2...(11n(n+1)2)2,n2. Then the value of limnxn
  • 1/3
  • 1/9
  • 1/81
  • 0 (zero)
The difference of slopes of lines represent by y22xysec2α+(3+tan2α)(tan2α1)x2=0 is
  • 3
  • 4
  • 0
  • 2
limx11cos2(x1)x1
  • Exists and it equals 2
  • Exists and it equals 2
  • Does not exist because x10
  • Does not exist because left hand limit is not equal to right hand limit
If f(x)=3x107x8+5x621x3+3x27, then lima0f(1α)f(1)α3+3α is 
  • 533
  • 533
  • 553
  • 553
limn12+22+32+....+n2n3 is equal to
  • 1
  • 1/2
  • 1/3
  • 0
If y=|cosx|+|sinx|, then dydx at x=2π3  is
  • 132
  • 0
  • 312
  • 3+12
The value of Limxddx33r3(r+1)(r1)dr,is
  • 0
  • 1
  • 12
  • non existent
Solve

limx0sin5xtan3x
  • 53
  • 53
  • 73
  • None of these
If ax2+2hxy+by2=0 then dydx is equal to
  • yx
  • xy
  • xy
  • none of these
limxπ2cotxcosx(π2x)3=
  • 12
  • 12
  • 2
  • 2
Solve:
10dxx+1+xdx=
  • 43(2+1)
  • 43(21)
  • 34(21)
  • 34(22)
If y=a sin x+b cos x, then y2+(dydx)2 is
  • function of x
  • function of y
  • function of x and y
  • constant
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers