Processing math: 8%

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 7 - MCQExams.com

Differentiate the following w.r.t. x.
tan3x.
  • (3tan2x)
  • (3tan2x)(sec2x)
  • (tan2x)(sec2x)
  • (tan2x)(sin2x)
Differentiate the following w.r.t. x.
tanx2.
  • sec2(x2)
  • sec2(x2)2x
  • sec2(x3)2x
  • tan2(x2)2x
Differentiate the following w.r.t. x.
sin2x.
  • 12xsin(3x).
  • 1xsin(2x).
  • 12xsin(2x).
  • 12xsin(4x).
\lim _{ x\rightarrow { 0 }^{ + } }{ \left( { \left( x\cos { x }  \right)  }^{ x }+{ \left( \cos { x }  \right)  }^{ \frac { 1 }{ \ln { x }  }  }+{ \left( x\sin { x }  \right)  }^{ x } \right)  }  is equal to
  • 2
  • 2+e
  • 2+\dfrac { 1 }{ e }
  • 3
If 8f(x) + 6f\left( {{1 \over x}} \right) = x + 5 and y = {x^2}f(x) ,then {{dy} \over {dx}} at x=-1 is equal to
  • 0
  • {1 \over {14}}
  • - {1 \over {14}}
  • None of these
If f:\mathrm{R}\to\mathrm{R} is a differentiable function such that f'(x)\gt 2f(x)\forall x\in \mathrm{R} and f(0)=1, then 
  • f(x) is increasing in (0,\infty)
  • f(x) is decreasing in (0,\infty)
  • f(x)\gt e^{2x} in (0,\infty)
  • f(x)\lt e^{2x} in (0,\infty)
\frac{d^n}{dx^n}[log(ax+b)] is equal to:
  • \frac{(-1)^n n! a^n}{(ax+b)^{n+1}}
  • \frac{(-1)^{n-1} {(n-1)}! a^n}{(ax+b)^{n+1}}
  • \frac{(-1)^{n+1} ({n+1)}! a^{n-1}}{(ax+b)^{n+1}}
  • \frac{(-1)^{n-1} {(n-1)}! a^n}{(ax+b)^n}
\dfrac{\displaystyle \lim_{h \rightarrow 0}(h+1)^2}{\displaystyle \lim_{h\rightarrow 0}(1+h)^{2/h}} is equal to
  • e^1
  • e^{-2}
  • e^2
  • e^{-1}
Function f(x)=\left| {x - 2} \right| - 2\left| {x - 4} \right|\,is discontinous at:
  • x=2,4
  • x=2
  • No where
  • Except x=2
Let {P_n} = \prod\limits_{k = 2}^n {\left( {1 - {1 \over {{}^{{}^{k + 1}}{C_2}}}} \right)} . If \mathop {\lim }\limits_{x \to \infty } {P_n} can be expressed as lowest rational in the form \dfrac { a }{ b }  , then value of (a+b) is __________.
  • 4
  • 8
  • 10
  • 12
Given y=\dfrac {3}{x}, \dfrac {dy}{dx}=
  • 3
  • \dfrac {3}{x^{2}}
  • \dfrac {-3}{x^{2}}
  • 3x
Statement I: The function f(x) in the figure is differentiable at x = a
Statement II: The function f(x) continuous at x = a

1019713_fa884f00f0bf444a8a92598dbf0fe684.png
  • Both Statement I and Statement II are true and the Statement II is the correct explanation of the Statement I.
  • Both Statement I and Statement II are true and the Statement II is not the correct explanation of the Statement I.
  • Statement I is true but Statement II is false
  • Statement I is false but Statement II is true.
\mathop {\lim}\limits_{x \to \frac{\pi}{2}} \tan x =
  • \infty
  • - \infty
  • 0
  • does not exist
Suppose the function f(x)-f(2x) has the derivative 5 at x=1 and derivative 7 at x=2. The derivative of the function f(x)-f(4x) at x=1, has the value equal to?
  • 19
  • 9
  • 17
  • 14
\lim _{ x\rightarrow 0 }{ \log _{ \left( \tan ^{ 2 }{ x }  \right)  }{ \left( \tan ^{ 2 }{ 2x }  \right) = }  }
  • 1
  • 2
  • \dfrac {1}{2}
  • Does\ not\ exist
\displaystyle \lim_{n \rightarrow \infty} {^{n}C_{c}}\left(\dfrac {m}{n}\right)^{x}\left(1-\dfrac {m}{n}\right)^{n-x} equal to
  • \dfrac {M^{x}}{x\ !}.e^{-m}
  • \dfrac {M^{x}}{x\ !}.e^{m}
  • 0
  • \dfrac {m^{x+1}}{me^{m}x\ !}
If [.] denotes, GIF , then \underset{x \rightarrow 0}{lt} \left( \left[\dfrac{2018 sin^{-1} x}{x}\right] + \left[\dfrac{2020x}{tan^{-1} x}\right]\right)
  • 4038
  • 4037
  • 4036
  • 4039
The shortest distance between line y-x=1 and curve x={y}^{2} is
  • \dfrac {\sqrt {3}}{4}
  • \dfrac {3\sqrt {2}}{8}
  • \dfrac {8}{2\sqrt {2}}
  • \dfrac {4}{\sqrt {3}}
{ x }_{ n }={ \left( 1-\cfrac { 1 }{ 3 }  \right)  }^{ 2 }{ \left( 1-\cfrac { 1 }{ 6 }  \right)  }^{ 2 }{ \left( 1-\cfrac { 1 }{ 10 }  \right)  }^{ 2 }...{ \left( 1-\cfrac { 1 }{ \cfrac { n(n+1) }{ 2 }  }  \right)  }^{ 2 },n\ge 2. Then the value of \displaystyle\lim _{ n\rightarrow \infty  }{ { x }_{ n } }
  • 1/3
  • 1/9
  • 1/81
  • 0 (zero)
The difference of slopes of lines represent by {y^2} - 2xy{\sec ^2}\alpha  + \left( {3 + {{\tan }^2}\alpha } \right)\left( {{{\tan }^2}\alpha  - 1} \right){x^2} = 0 is
  • 3
  • 4
  • 0
  • 2
\lim _{ x\rightarrow 1 }{ \dfrac { \sqrt { 1-\cos { 2\left( x-1 \right)  }  }  }{ x-1 }  }
  • Exists and it equals \sqrt {2}
  • Exists and it equals -\sqrt {2}
  • Does not exist because x-1\rightarrow 0
  • Does not exist because left hand limit is not equal to right hand limit
If f(x) = 3x^{10} - 7x^8 + 5x^6 - 21x^3 + 3x^2 - 7, then \underset{a \rightarrow 0}{\lim} \dfrac{f(1 - \alpha) - f(1)}{\alpha^3 + 3 \alpha} is 
  • -\dfrac{53}{3}
  • \dfrac{53}{3}
  • -\dfrac{55}{3}
  • \dfrac{55}{3}
\displaystyle \lim_{n \rightarrow \infty}\dfrac {1^{2}+2^{2}+3^{2}+....+n^{2}}{n^{3}} is equal to
  • 1
  • 1/2
  • 1/3
  • 0
If y=|\cos x|+|\sin x|, then \dfrac {dy}{dx} at x=\dfrac {2\pi}{3}  is
  • \dfrac {1-\sqrt {3}}{2}
  • 0
  • \dfrac {\sqrt {3}-1}{2}
  • \dfrac {\sqrt {3}+1}{2}
The value of \underset { x\longrightarrow \infty  }{ Lim } \dfrac{d}{dx}\overset { \sqrt { 3 }  }{ \underset { -\sqrt { 3 }  }{ \int }  } \dfrac{r^3}{(r+1)(r-1)}dr,is
  • 0
  • 1
  • \dfrac{1}{2}
  • non existent
Solve

\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x}}{{\tan 3x}}
  • -\dfrac{5}{3}
  • \dfrac{5}{3}
  • \dfrac{7}{3}
  • None of these
If a{x^2} + 2hxy + b{y^2} = 0 then \frac{{dy}}{{dx}} is equal to
  • \frac{y}{x}
  • \frac{x}{y}
  • - \frac{x}{y}
  • none of these
\underset{x \rightarrow \frac{\pi}{2}}{\lim} \dfrac{\cot x - \cos x}{\left(\dfrac{\pi}{2} -x \right)^3} =
  • \dfrac{-1}{2}
  • \dfrac{1}{2}
  • 2
  • -2
Solve:
\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}dx=
  • \dfrac{4}{3}(\sqrt{2}+1)
  • \dfrac{4}{3}(\sqrt{2}-1)
  • \dfrac{3}{4}(\sqrt{2}-1)
  • \dfrac{3}{4}(\sqrt{2}-2)
If y=a\ \sin\ x+b\ \cos\ x, then y^{2}+\left ( \dfrac{dy}{dx} \right )^{2} is
  • function of x
  • function of y
  • function of x and y
  • constant
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers