Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 8 - MCQExams.com

Find the value of limit limxπ62sin2x+sinx12sin2x3sinx+1=.
  • 0
  • 3
  • 3
  • 1
If f(x+y)=2f(x).f(y) for all x,y, where f(0)=3 and f(4)=2 then f(4)=3 is equal to
  • 6
  • 12
  • 4
  • 3
If y=(x+x2+a2)n then dydx=
  • y
  • ny
  • nyx2+a2
  • yx2+a2
If f(x) is the integral of 2sinxsin2xx3, x0. Find limx0f(x), where f(x)=df(x)dx
  • 12
  • 1
  • 13
  • 2
limx0xtan2x2xtanx(1cos2x)2=
  • 2
  • 12
  • 2
  • 12
limh0sinx+hsinxh=__________.
  • cosx
  • 12sinx
  • cosx2x
  • sinx
If 2f(sinx)+2f(cosx)=tanx, (x>0), then limx11xf(x)= 
  • 2
  • 12
  • 2
  • 12
ddx[tanxcotxtanx+cotx]=
  • 2 sin2x
  • -2 sin2x
  • 2 cos 2x
  • -2cos 2x
If limx0(ax+b)4+sinxtanx=274 where a,bR then the value of 
  • a=2 and b=7
  • a=2 and b=7
  • a=7 and b=2
  • a=7 and b=2
Evaluate: limx0xtan2x2xtanx(1cos2x)2 
  • 14
  • 1
  • 12
  • 12
limxπ2cotxcosx(π2x)3 equals:

  • 124
  • 116
  • 0
  • 14
The solution of the differential equation  (dydx)23x(dydx)2y=8  is
  • y=2x2+4
  • y=2x24
  • y=2x+4
  • y=2x4
limx0xtan2x2xtanx(1cos2x)2 equals 
  • 14
  • 1
  • 12
  • 12
Let f(x)={x2+k,whenx0x2k,whenx<0. If the function f(x) be continous at x=0, then k=
  • 0
  • 1
  • 2
  • 2
The value of limx0f(x) where f(x)=cos(sinx)cosxx4, is
  • 2
  • 16
  • 23
  • 13
The value of limxaxbabx2a2(a>b) is
  • 14a
  • 1aab
  • 12aab
  • 14aab
limx0(27+x)1/339(27+x)2/3  equals :
  • 1/6
  • 1/6
  • 1/3
  • 1/3
A curve in the 1st quadrant passes through (1,1). Its drifferential equation is (yxy2)dx+(x+x2y2)dy=0. Hence the equation of the curve is 
  • y1xy=lny
  • y1xy=lnx
  • yxy=lny
  • yxy=lnx
If (cosx)y=(siny)x, then dydx =
  • log(siny)+ytanxlog(cosx)xcoty
  • log(siny)ytanxlog(cosx)+coty
  • log(siny)log(cosx)
  • log(cosx)log(siny)
Limx1[[4x2x113x+x21x3]1+3(x41)x3x1]=
  • 13
  • 3
  • 12
  • 32
Let  Un=n!(n+2)!  where  nN.  If  Sn=nn1Un  then  limnSn  equals :
  • 2
  • 1
  • 1/2
  • 1/3
limx0  (1cos2x)22xtanxxtan2x is :
  • 2
  • 12
  • 12
  • 2
The differential of f(x)=2x2+x at x=0 and δx=0.15 is
  • 0.07
  • 0.075
  • 0.075
  • 0.15
The value of limx0(1cos2x)sin5xx2sin3x is
  • 10/3
  • 3/10
  • 6/5
  • 5/6
Let f(x)=ax+bx+1,limx0f(x)=2 and limxf(x)=1 then f(2)=
  • 1
  • 2
  • 1
  • 0
Evaluate the limit, limx0x((1+x)1/xe)x((1+x2)1/x2e)
  • 0
  • 1
  • 2
  • DNE
Evaluate
limx01cos(1cos2x)x4
  • 4
  • 2
  • 1
  • 12
limx(x2x+1axb)=0,   then the values of  a  and  b  are given by
  • a=1,b=1/2
  • a=1,b=1/2
  • a=1,b=1/2
  • None of these
limxπ/4cot3xtanxcos(x+π/4)  is
  • 4
  • 82
  • 8
  • 42
Let f(x)=limnn1r=0x(rx+1){(r+1)x+1}, then?
  • f(x) is continuous but not differentiable at x=0
  • f(x) is both continuous and differentiable at x=0
  • f(x) is neither continuous nor differentiable at x=0
  • f(x) is a periodic function
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers