Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 9 - MCQExams.com

If π0xf(sinx)dx=Aπ/20f(sinx)dx, then A is _____________.
  • 0
  • π
  • π/4
  • 2π
limx[nn2+12+nn2+22+nn2+32+....+1n5]
  • π/4
  • tan1(2)
  • π/2
  • tan1(3)
Find the derivative of tanx with respect to x using the first principle.
  • sec2x2tanx
  • secx2tanx
  • sec2xtanx
  • sec2x2tan
The value of nlim1.n+2.(n1)+3.(n2)+...+n.112+22+...+n2 is
  • 1
  • 1
  • 12
  • 12
The value of limx01+sinxcosx+log(1x)x3, is
  • 1
  • 1/2
  • 1/2
  • 1
The value of limθ0+sinθsinθ is equal to
  • 0
  • 1
  • 1
  • 4
f(x)=sinx and f(π)
  • 1
  • 0
  • 1
  • None of these
If x+y=sin(xy) then dydx is equal to
  • 12
  • 0
  • 1
  • 13
If y = \sqrt{\dfrac{sec x-1}{sec x+1}} then \dfrac{dy}{dx} =
  • \dfrac{1}{2} sec^2 \dfrac{x}{2}
  • sec^2 \dfrac{x}{2}
  • \dfrac{1}{2} tan \dfrac{x}{2}
  • tan \dfrac{x}{2}
Let f:(0, \infty)\to R be a differentiable function such that f'(x)=2-\dfrac{f(x)}{x} for all x\in (0, \infty) and f(1)\neq 1. Then 
  • \underset { x\rightarrow { 0 }^{ + } }{ \lim } f'\left( \dfrac { 1 }{ x } \right) =1
  • \underset { x\rightarrow { 0 }^{ + } }{ \lim } xf\left( \dfrac { 1 }{ x } \right) =2
  • \underset { x\rightarrow { 0 }^{ + } }{ \lim } x^{ 2 }f'\left( x \right) =0
  • \left| f\left( x \right) \right| \le 2 for all X\in \left( 0,2 \right)
If \mathrm { L } = \lim _ { \mathrm { x } ^ { 2 } \rightarrow \mathrm { a } } \frac { \mathrm { b } - \cos \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) } { \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) \sin \left( \mathrm { cx } ^ { 2 } - \mathrm { a } \right) } is non-
zero finite ( \mathrm { a } > 0 ) , then-
  • L = 2 , b = 1 , c = 1
  • L = \frac { 1 } { 2 } , b = 1 , c = 1
  • L = 4 , b = - 1 , c = - 1
  • L = \frac { 1 } { 4 } , b = - 1 , c = - 1
The solution the differential equation \cos x \sin y dx+ \sin x \cos y dy =0
  • \dfrac{\sin x}{\sin y}=c
  • \cos x+ \cos y=c
  • \sin x + \sin y =c
  • \sin x. \sin y=c
For x>y, \displaystyle\lim_{x\rightarrow 0}{\left[\left(\sin{x}\right)^{1/x}+\left(\cfrac{1}{x}\right)^{\sin{x}}\right]} is :
  • 0
  • -1
  • 1
  • 2
If the function f(x) satisfies the relation f(x+y)=y\dfrac{|x-1|}{(x-1)}f(x)+f(y) with f(1)=2, then \displaystyle\lim_{x\rightarrow 1}f'(x) is?
  • 2
  • -2
  • 0
  • Limit do not exixst
Let f : R \to R be a differentiable function satisfying f'(3) + f'(2) = 0.
Then \underset{x \to 0}{\lim} \left(\dfrac{1+f(3+x)-f(3)}{1+f(2-x) - f(2)}\right)^{\frac{1}{x}} is equal to 
  • e^2
  • e
  • e^{-1}
  • 1
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow a}\dfrac{\sqrt{x}+\sqrt{a}}{x+a}.
  • -\dfrac{1}{\sqrt{a}}
  • \dfrac{1}{{a}}
  • \dfrac{1}{2\sqrt{a}}
  • \dfrac{1}{\sqrt{a}}
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{3x+1}{x+3}.
  • \dfrac{1}{3}
  • \dfrac{2}{3}
  • \dfrac{5}{3}
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{x^{2/3}-9}{x-27}.
  • \dfrac{1}{3}
  • \dfrac{1}{2}
  • \dfrac{1}{5}
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{ax+b}{cx+d}, d\neq 0.
  • \dfrac{a}{c}
  • \dfrac{a}{d}
  • \dfrac{b}{d}
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 1}\dfrac{\sqrt{x^2-1}+\sqrt{x-1}}{\sqrt{x^2-1}}, x > 1.
  • \dfrac{\sqrt{2}+1}{\sqrt{2}}
  • \dfrac{\sqrt{2}-1}{\sqrt{2}}
  • \dfrac{\sqrt{2}+1}{{2}}
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{a^2+x^2}-a}{x^2}.
  • \dfrac{1}{\sqrt a}
  • \dfrac{1}{\sqrt {2a}}
  • \dfrac{1}{a}
  • \dfrac{1}{2a}
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{2x}{\sqrt{a+x}-\sqrt{a-x}}.
  • -2\sqrt{a}
  • \sqrt{a}
  • 2\sqrt{a}
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow a}\dfrac{x-a}{\sqrt{x}-\sqrt{a}}.
  • 2\sqrt{a}
  • 2{a}
  • 2{a^{\frac 13}}
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{a+x}-\sqrt{a}}{x\sqrt{a^2+ax}}.
  • \dfrac{1}{2\sqrt{a}}
  • \dfrac{1}{2a\sqrt{a}}
  • \dfrac{1}{2a}
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 4}\dfrac{2-\sqrt{x}}{4-x}.
  • \dfrac{1}{4}
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 2}\dfrac{\sqrt{1+4x}-\sqrt{5+2x}}{x-2}.
  • \dfrac{1}{2}
  • \dfrac{1}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{5}
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 2}\dfrac{x-2}{\sqrt{x}-\sqrt{2}}.
  • 2\sqrt{3}
  • 2\sqrt{2}
  • 2\sqrt{5}
  • None of these
Evaluate the following limit.
\displaystyle\lim_{x\rightarrow 0}\dfrac{8^x-2^x}{x}.
  • log 4
  • log 6
  • log 5
  • None of these
Evaluate the following limits.
\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}.
  • \dfrac{1}{\sqrt{2}}
  • -\dfrac{1}{\sqrt{3}}
  • -\dfrac{1}{{2}}
  • -\dfrac{1}{\sqrt{2}}
Evaluate the following limits.
If \displaystyle\lim_{x\rightarrow a}\dfrac{x^9-a^9}{x-a}=9, find all possible values of a.
  • 2, -2.
  • 1, -1.
  • 1, 0.
  • None of these
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers