Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 9 - MCQExams.com

If π0xf(sinx)dx=Aπ/20f(sinx)dx, then A is _____________.
  • 0
  • π
  • π/4
  • 2π
limx[nn2+12+nn2+22+nn2+32+....+1n5]
  • π/4
  • tan1(2)
  • π/2
  • tan1(3)
Find the derivative of tanx with respect to x using the first principle.
  • sec2x2tanx
  • secx2tanx
  • sec2xtanx
  • sec2x2tan
The value of nlim1.n+2.(n1)+3.(n2)+...+n.112+22+...+n2 is
  • 1
  • 1
  • 12
  • 12
The value of limx01+sinxcosx+log(1x)x3, is
  • 1
  • 1/2
  • 1/2
  • 1
The value of limθ0+sinθsinθ is equal to
  • 0
  • 1
  • 1
  • 4
f(x)=sinx and f(π)
  • 1
  • 0
  • 1
  • None of these
If x+y=sin(xy) then dydx is equal to
  • 12
  • 0
  • 1
  • 13
If y=secx1secx+1 then dydx =
  • 12sec2x2
  • sec2x2
  • 12tanx2
  • tanx2
Let f:(0,)R be a differentiable function such that f(x)=2f(x)x for all x(0,) and f(1)1. Then 
  • limx0+f(1x)=1
  • limx0+xf(1x)=2
  • limx0+x2f(x)=0
  • |f(x)|2 for all X(0,2)
If L=limx2abcos(x2a)(x2a)sin(cx2a) is non-
zero finite (a>0), then-
  • L = 2 , b = 1 , c = 1
  • L=12,b=1,c=1
  • L = 4 , b = - 1 , c = - 1
  • L=14,b=1,c=1
The solution the differential equation cosxsinydx+sinxcosydy=0
  • sinxsiny=c
  • cosx+cosy=c
  • sinx+siny=c
  • sinx.siny=c
For x>y, limx0[(sinx)1/x+(1x)sinx] is :
  • 0
  • -1
  • 1
  • 2
If the function f(x) satisfies the relation f(x+y)=y|x1|(x1)f(x)+f(y) with f(1)=2, then limx1f(x) is?
  • 2
  • 2
  • 0
  • Limit do not exixst
Let f:RR be a differentiable function satisfying f(3)+f(2)=0.
Then limx0(1+f(3+x)f(3)1+f(2x)f(2))1x is equal to 
  • e2
  • e
  • e1
  • 1
Evaluate the following limits.
limxax+ax+a.
  • 1a
  • 1a
  • 12a
  • 1a
Evaluate the following limits.
limx03x+1x+3.
  • 13
  • 23
  • 53
  • None of these
Evaluate the following limits.
limx0x2/39x27.
  • 13
  • 12
  • 15
  • None of these
Evaluate the following limits.
limx0ax+bcx+d,d0.
  • ac
  • ad
  • bd
  • None of these
Evaluate the following limits.
limx1x21+x1x21,x>1.
  • 2+12
  • 212
  • 2+12
  • None of these
Evaluate the following limits.
limx0a2+x2ax2.
  • 1a
  • 12a
  • 1a
  • 12a
Evaluate the following limits.
limx02xa+xax.
  • 2a
  • a
  • 2a
  • None of these
Evaluate the following limits.
limxaxaxa.
  • 2a
  • 2a
  • 2a13
  • None of these
Evaluate the following limits.
limx0a+xaxa2+ax.
  • 12a
  • 12aa
  • 12a
  • None of these
Evaluate the following limits.
limx42x4x.
  • 14
  • 12
  • 13
  • None of these
Evaluate the following limits.
limx21+4x5+2xx2.
  • 12
  • 13
  • 14
  • 15
Evaluate the following limits.
limx2x2x2.
  • 23
  • 22
  • 25
  • None of these
Evaluate the following limit.
limx08x2xx.
  • log4
  • log6
  • log5
  • None of these
Evaluate the following limits.
limx02x2+xx.
  • 12
  • 13
  • 12
  • 12
Evaluate the following limits.
If limxax9a9xa=9, find all possible values of a.
  • 2,2.
  • 1,1.
  • 1,0.
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers