CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 9 - MCQExams.com

If $$\overset { \pi  }{ \underset { 0 }{\int  }  } x \, f(sin\,x)dx=A\overset { \pi /2 }{ \underset { 0 }{ \int }  } f(sin\,x)dx,$$ then A is _____________.
  • $$0$$
  • $$\pi$$
  • $$\pi/4$$
  • $$2\pi$$
$$\displaystyle \lim _{ x\rightarrow \infty }{ \left[\dfrac{n}{n^{2}+1^{2}}+\dfrac{n}{n^{2}+2^{2}}+\dfrac{n}{n^{2}+3^{2}}+....+\dfrac{1}{n^{5}}\right] }$$
  • $$\pi/4$$
  • $$\tan^{-1}{(2)}$$
  • $$\pi/2$$
  • $$\tan^{-1}{(3)}$$
Find the derivative of $$\sqrt{\tan x}$$ with respect to $$x$$ using the first principle.
  • $$\dfrac {sec^2x}{2\sqrt {tanx}}$$
  • $$\dfrac {secx}{2\sqrt {tanx}}$$
  • $$\dfrac {sec^2x}{\sqrt {tanx}}$$
  • $$\dfrac {sec^2x}{2\sqrt {tan}}$$
The value of $$\displaystyle n\xrightarrow { lim } \infty\frac{1.n+2.(n-1)+3.(n-2)+...+n.1}{{1}^{2}+{2}^{2}+...+{n}^{2}}$$ is
  • $$1$$
  • $$-1$$
  • $$\displaystyle \frac{1}{\sqrt{2}}$$
  • $$\displaystyle \frac{1}{2}$$
The value of $$\displaystyle \lim _{ x\rightarrow 0 } \dfrac{1+\sin{x}-\cos{x}+\log{(1-x)}}{x^{3}}$$, is
  • $$-1$$
  • $$1/2$$
  • $$-1/2$$
  • $$1$$
The value of $$\displaystyle \lim_{\theta \rightarrow 0^{+}} \dfrac {\sin \sqrt {\theta}}{\sqrt {\sin  \theta}}$$ is equal to
  • $$0$$
  • $$1$$
  • $$-1$$
  • $$4$$
$$f(x)=\sin  x$$ and $$f^{\prime} (\pi)$$
  • $$-1$$
  • $$0$$
  • $$1$$
  • None of these
If $$x+y=\sin (x-y)$$ then $$\dfrac { dy }{ dx } $$ is equal to
  • $$\dfrac { 1 }{ 2 } $$
  • $$0$$
  • $$-1$$
  • $$\dfrac { 1 }{ 3 } $$
If $$y = \sqrt{\dfrac{sec x-1}{sec x+1}}$$ then $$\dfrac{dy}{dx}$$ =
  • $$\dfrac{1}{2} sec^2 \dfrac{x}{2}$$
  • $$ sec^2 \dfrac{x}{2}$$
  • $$\dfrac{1}{2} tan \dfrac{x}{2}$$
  • $$tan \dfrac{x}{2}$$
Let $$f:(0, \infty)\to R$$ be a differentiable function such that $$f'(x)=2-\dfrac{f(x)}{x}$$ for all $$x\in (0, \infty)$$ and $$f(1)\neq 1$$. Then 
  • $$\underset { x\rightarrow { 0 }^{ + } }{ \lim } f'\left( \dfrac { 1 }{ x } \right) =1$$
  • $$\underset { x\rightarrow { 0 }^{ + } }{ \lim } xf\left( \dfrac { 1 }{ x } \right) =2$$
  • $$\underset { x\rightarrow { 0 }^{ + } }{ \lim } x^{ 2 }f'\left( x \right) =0$$
  • $$\left| f\left( x \right) \right| \le 2$$ for $$ $$ all $$X\in \left( 0,2 \right) $$
If $$ \mathrm { L } = \lim _ { \mathrm { x } ^ { 2 } \rightarrow \mathrm { a } } \frac { \mathrm { b } - \cos \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) } { \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) \sin \left( \mathrm { cx } ^ { 2 } - \mathrm { a } \right) } $$ is non-
zero finite $$ ( \mathrm { a } > 0 ) , $$ then-
  • L = 2 , b = 1 , c = 1
  • $$

    L = \frac { 1 } { 2 } , b = 1 , c = 1

    $$
  • L = 4 , b = - 1 , c = - 1
  • $$

    L = \frac { 1 } { 4 } , b = - 1 , c = - 1

    $$
The solution the differential equation $$\cos x \sin y dx+ \sin x \cos y dy =0$$
  • $$\dfrac{\sin x}{\sin y}=c$$
  • $$\cos x+ \cos y=c$$
  • $$\sin x + \sin y =c$$
  • $$\sin x. \sin y=c$$
For $$x>y$$, $$\displaystyle\lim_{x\rightarrow 0}{\left[\left(\sin{x}\right)^{1/x}+\left(\cfrac{1}{x}\right)^{\sin{x}}\right]}$$ is :
  • 0
  • -1
  • 1
  • 2
If the function $$f(x)$$ satisfies the relation $$f(x+y)=y\dfrac{|x-1|}{(x-1)}f(x)+f(y)$$ with $$f(1)=2$$, then $$\displaystyle\lim_{x\rightarrow 1}f'(x)$$ is?
  • $$2$$
  • $$-2$$
  • $$0$$
  • Limit do not exixst
Let $$f : R \to R$$ be a differentiable function satisfying $$f'(3) + f'(2) = 0$$.
Then $$\underset{x \to 0}{\lim} \left(\dfrac{1+f(3+x)-f(3)}{1+f(2-x) - f(2)}\right)^{\frac{1}{x}}$$ is equal to 
  • $$e^2$$
  • $$e$$
  • $$e^{-1}$$
  • $$1$$
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow a}\dfrac{\sqrt{x}+\sqrt{a}}{x+a}$$.
  • $$-\dfrac{1}{\sqrt{a}}$$
  • $$\dfrac{1}{{a}}$$
  • $$\dfrac{1}{2\sqrt{a}}$$
  • $$\dfrac{1}{\sqrt{a}}$$
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{3x+1}{x+3}$$.
  • $$\dfrac{1}{3}$$
  • $$\dfrac{2}{3}$$
  • $$\dfrac{5}{3}$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{x^{2/3}-9}{x-27}$$.
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{5}$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{ax+b}{cx+d}, d\neq 0$$.
  • $$\dfrac{a}{c}$$
  • $$\dfrac{a}{d}$$
  • $$\dfrac{b}{d}$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 1}\dfrac{\sqrt{x^2-1}+\sqrt{x-1}}{\sqrt{x^2-1}}, x > 1$$.
  • $$\dfrac{\sqrt{2}+1}{\sqrt{2}}$$
  • $$\dfrac{\sqrt{2}-1}{\sqrt{2}}$$
  • $$\dfrac{\sqrt{2}+1}{{2}}$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{a^2+x^2}-a}{x^2}$$.
  • $$\dfrac{1}{\sqrt a}$$
  • $$\dfrac{1}{\sqrt {2a}}$$
  • $$\dfrac{1}{a}$$
  • $$\dfrac{1}{2a}$$
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{2x}{\sqrt{a+x}-\sqrt{a-x}}$$.
  • $$-2\sqrt{a}$$
  • $$\sqrt{a}$$
  • $$2\sqrt{a}$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow a}\dfrac{x-a}{\sqrt{x}-\sqrt{a}}$$.
  • $$2\sqrt{a}$$
  • $$2{a}$$
  • $$2{a^{\frac 13}}$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{a+x}-\sqrt{a}}{x\sqrt{a^2+ax}}$$.
  • $$\dfrac{1}{2\sqrt{a}}$$
  • $$\dfrac{1}{2a\sqrt{a}}$$
  • $$\dfrac{1}{2a}$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 4}\dfrac{2-\sqrt{x}}{4-x}$$.
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{3}$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 2}\dfrac{\sqrt{1+4x}-\sqrt{5+2x}}{x-2}$$.
  • $$\dfrac{1}{2}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{1}{4}$$
  • $$\dfrac{1}{5}$$
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 2}\dfrac{x-2}{\sqrt{x}-\sqrt{2}}$$.
  • $$2\sqrt{3}$$
  • $$2\sqrt{2}$$
  • $$2\sqrt{5}$$
  • None of these
Evaluate the following limit.
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{8^x-2^x}{x}$$.
  • $$log 4$$
  • $$log 6$$
  • $$log 5$$
  • None of these
Evaluate the following limits.
$$\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}$$.
  • $$\dfrac{1}{\sqrt{2}}$$
  • $$-\dfrac{1}{\sqrt{3}}$$
  • $$-\dfrac{1}{{2}}$$
  • $$-\dfrac{1}{\sqrt{2}}$$
Evaluate the following limits.
If $$\displaystyle\lim_{x\rightarrow a}\dfrac{x^9-a^9}{x-a}=9$$, find all possible values of a.
  • $$2, -2$$.
  • $$1, -1$$.
  • $$1, 0$$.
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers