Explanation
$${\textbf{Step -1: After applying associative and distributive law}}$$
$$\text{Given, } \left( {p \wedge q} \right) \vee \left( { \sim p \wedge q} \right) \vee \left( { \sim q \wedge r} \right)$$
$$ \equiv \left[ {\left( {p \vee \sim p} \right) \wedge q} \right] \vee \left( { \sim q \wedge r} \right)$$ $$[\because\boldsymbol{(a\vee b)\wedge c} \boldsymbol{\equiv (a\wedge c)\vee (b\wedge c)}]$$
$${\textbf{Step -2: Apply complement law}}$$
$$ \equiv \left( {T \wedge q} \right) \vee \left( { \sim q \wedge r} \right)$$ $$[\because\boldsymbol{(a\vee\sim a)\equiv T}]$$
$${\textbf{Step -3:Apply identity law}}$$
$$ \equiv q \vee \left( { \sim q \wedge r} \right)$$ $$[\because\boldsymbol{(T\wedge a)\equiv q}]$$
$${\textbf{Step -4: Apply distributive law}}$$
$$ \equiv \left( {q \vee \sim q} \right) \wedge \left( {q \vee r} \right)$$ $$[\because\boldsymbol{(a\wedge b)\vee c} \boldsymbol{\equiv (a\vee c)\wedge (b\vee c)}]$$
$${\textbf{Step -5: Apply complement law}}$$
$$ \equiv T \wedge \left( {q \vee r} \right)$$ $$[\because\boldsymbol{(a\vee\sim a)\equiv T}]$$
$${\textbf{Step -6: Apply identity law}}$$
$$ \equiv q \vee r$$ $$[\because\boldsymbol{(T\wedge a)\equiv q}]$$
$${\textbf{Hence, }}$$$$\mathbf{\left( {p \wedge q} \right) \vee \left( { \sim p \wedge q} \right) \vee \left( { \sim q \wedge r} \right) \equiv q \vee r}$$
Please disable the adBlock and continue. Thank you.