Explanation
Step -1: After applying associative and distributive law
Given, (p∧q)∨(∼p∧q)∨(∼q∧r)
≡[(p∨∼p)∧q]∨(∼q∧r) [\because\boldsymbol{(a\vee b)\wedge c} \boldsymbol{\equiv (a\wedge c)\vee (b\wedge c)}]
{\textbf{Step -2: Apply complement law}}
\equiv \left( {T \wedge q} \right) \vee \left( { \sim q \wedge r} \right) [\because\boldsymbol{(a\vee\sim a)\equiv T}]
{\textbf{Step -3:Apply identity law}}
\equiv q \vee \left( { \sim q \wedge r} \right) [\because\boldsymbol{(T\wedge a)\equiv q}]
{\textbf{Step -4: Apply distributive law}}
\equiv \left( {q \vee \sim q} \right) \wedge \left( {q \vee r} \right) [\because\boldsymbol{(a\wedge b)\vee c} \boldsymbol{\equiv (a\vee c)\wedge (b\vee c)}]
{\textbf{Step -5: Apply complement law}}
\equiv T \wedge \left( {q \vee r} \right) [\because\boldsymbol{(a\vee\sim a)\equiv T}]
{\textbf{Step -6: Apply identity law}}
\equiv q \vee r [\because\boldsymbol{(T\wedge a)\equiv q}]
{\textbf{Hence, }}\mathbf{\left( {p \wedge q} \right) \vee \left( { \sim p \wedge q} \right) \vee \left( { \sim q \wedge r} \right) \equiv q \vee r}
Please disable the adBlock and continue. Thank you.