Explanation
Total number of coins =6
(1) '0' heads =1 chance(6C0)
(2) '1' heads =6 chance(6C1)
(3) '2' heads=15 chance(6C2)
(4) '3' heads=20 chance (6C3)
Hence total outcome =42
{\textbf{Step 1: Find m}}
{\text{For m,}}
{\text{First we select any 5 digits from 0,1,2,}}...{\text{,9}}
{\text{Number of ways = }}{}^{10}{{\text{C}}_5}
{\text{Now after selection there is only 1 way to arrange these selected digits, i}}{\text{.e}}{\text{., in descending order}}{\text{.}}
{\text{Therefore m = }}{}^{10}{{\text{C}}_5}\times{\text{ 1 = }}{}^{10}{{\text{C}}_5}
{\textbf{Step 2: Find n}}
{\text{For n,First we select any 5 digits from 1,2,}}...{\text{,9}}
{\text{We can't select zero as first digit because then the number won't be a 5 - digit number}}{\text{.}}
{\text{Therefore number of ways = }}{}^9{{\text{C}}_5}
\Rightarrow {\text{n = }}{}^9{{\text{C}}_5}\times{\text{ 1 = }}{}^9{{\text{C}}_5}
\Rightarrow {\text{m - n = }}{}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5}
{\text{We know that,}}{}^n{{\text{C}}_r}{\text{ + }}{}^n{{\text{C}}_{r - 1}}{\text{ = }}{}^{n + 1}{{\text{C}}_r}
\Rightarrow {}^{n + 1}{{\text{C}}_r}{\text{ - }}{}^n{{\text{C}}_r}{\text{ = }}{}^n{{\text{C}}_{r - 1}}
\Rightarrow {}^{10}{{\text{C}}_5}{\text{ - }}{}^9{{\text{C}}_5}{\text{ = }}{}^9{{\text{C}}_4}
{\text{Hence, m - n = }}{}^9{{\text{C}}_4}
{\textbf{Hence, the correct answer is option A}}
Each place of a ten digit number can be fixed by any of the two digits. So, the number of ways to form a ten digit number is {2^{10}}.
\begin{matrix} \sum _{ r=0 }^{ 10 }(r){ \, ^{ 20 } }{ C_{ r } } \\ \Rightarrow 0{ +^{ 20 } }{ C_{ 1 } }+{ 2^{ 20 } }{ C_{ 2 } }+{ 3^{ 20 } }{ C_{ 3 } }+............+{ 10^{ 20 } }{ C_{ 10 } } \\ \Rightarrow 20+20\times 19+\dfrac { { 20\times 19\times 18 } }{ 2 } +.........+10\times \dfrac { { 20! } }{ { 10!\times 10! } } \\ \Rightarrow 20\left[ { 1+19+\dfrac { { 19\times 18 } }{ 2 } +\dfrac { { 19\times 18\times 17 } }{ 6 } +...........+\dfrac { { 10\times 19! } }{ { 10!\times 10! } } } \right] \\ \Rightarrow 20\left[ { 1+19+\dfrac { { 19\times 18 } }{ 2 } +\dfrac { { 19\times 18\times 17 } }{ 6 } +.........+\dfrac { { 19! } }{ { 9!\times 10! } } } \right] \\ \, \, \, \, \, \, 20\left[ { ^{ 19 }{ C_{ 0 } }{ +^{ 19 } }{ C_{ 1 } }{ +^{ 19 } }{ C_{ 2 } }{ +^{ 19 } }{ C_{ 3 } }+..........{ +^{ 19 } }{ C_{ 10 } } } \right] \, \, \, \, Ans. \\ \end{matrix}
Please disable the adBlock and continue. Thank you.