Explanation
Exponent of 18 in 200!
\Rightarrow 18=(3)^{ 2 }\times 2
Exponent of P in n!
=\left[ \dfrac { n }{ p } \right] +\left[ \dfrac { n }{ p^{ 2 } } \right] +.............\left[ \dfrac { n }{ p^{ K } } \right] \\ =P^{ K }\le n
Exponential of 3 in n!
=\left[ \dfrac { 200 }{ 3 } \right] +\left[ \dfrac { 200 }{ 9 } \right] +\left[ \dfrac { 200 }{ 27 } \right] +\left[ \dfrac { 200 }{ 81 } \right] \\ =66+22+4+2\\ =94
Exponent of (3)^{ 2 }=48
Exponent of 2 in n!
=\left[ \dfrac { 200 }{ 2 } \right] +\left[ \dfrac { 200 }{ 4 } \right] +\left[ \dfrac { 200 }{ 8 } \right] +\left[ \dfrac { 200 }{ 16 } \right] >>48
Least exponent =48
Exponential of 18 is 48
Hence the correct answer is 48
Out of 8 men and 10 women . The committee has to select 5 men and 6 women.
^8C_5 \times ^{10}C_6 =11760
2 White balls
3 Black balls
4 Red balls
Three balls are drawn
Total possible combination
\Rightarrow ^{ 9 }{ P }_{ 3 }
Combination without black
\Rightarrow ^{ 2 }{ C_{ 2 } }\times ^{ 4 }{ C }_{ 1 }+^{ 2 }{ C }_{ 1 }\times ^{ 4 }{ C }_{ 2 }+^{ 4 }{ C }_{ 3 }
The combination with atleast one black
\Rightarrow \dfrac { 9\times 8\times 7 }{ 3\times 2\times 1 } -\left[ 1\times 4+2\times \dfrac { 12 }{ 2 } +4 \right] \\ \Rightarrow 12(7)-\left[ 20 \right] \\ \Rightarrow 84-20=64
64 Combination include atleast one black
Hence the correct answer is 64
Please disable the adBlock and continue. Thank you.