Explanation
$$\displaystyle P\left ( n \right ):2^{n+2}< 3^n$$
Let $$\displaystyle n=1 \,\,\,\,P\left ( 1 \right ):2^{3}< 3^{1}$$ i.e. $$\displaystyle P\left ( 1 \right )=8< 3$$ false
Let $$\displaystyle n=2\,\,\,\, P\left ( 2 \right ):2^{4}< 3^{2}$$ i.e. $$\displaystyle P\left ( 2 \right )=16< 9$$ false
Let $$\displaystyle n=3\,\,\,\, P\left ( 3 \right ):2^{5}< 3^{3}$$ or $$\displaystyle P\left ( 3 \right )=32< 27,$$ false
Let $$n=4$$
$$\displaystyle \therefore\,\,\,\, P\left ( 4 \right ):2^{6}< 3^{4}$$ or $$\displaystyle P(4)=64< 81$$ which is true.
$$\displaystyle P\left ( n \right ):2^{n+2}< 3^{n}$$ is true for $$\displaystyle \forall n> 3,n\epsilon N$$
Please disable the adBlock and continue. Thank you.