CBSE Questions for Class 11 Engineering Maths Principle Of Mathematical Induction Quiz 3 - MCQExams.com

Let $$f\left ( n \right )$$ equals to the sum of the cubes of three consecutive natural numbers.
$$f\left ( n \right )$$ leaves the remainder zero when divided by
  • $$11$$
  • $$9$$
  • $$99$$
  • none of these
For all $$n\in I^+$$, the statement $$P\left ( n \right )= \displaystyle \frac{n^{7}}{7}+\displaystyle \frac{n^{5}}{5}+\frac{2}{3}n^{3}-\frac{n}{105}$$ is a natural number is true, if
  • $$P\left ( 1 \right )$$ is true
  • $$P\left ( 2 \right )$$ is true
  • $$P\left ( 3 \right )$$ is true
  • True $$\forall \;n\;\in\;N$$
The number of values of $$n$$, for which $$\displaystyle p(n)=1!\:+2!\:+3!\:+4!\:+\dots+\:n!$$ is the square of a natural number, is equal to
  • $$0$$
  • $$1$$
  • $$2$$
  • $$3$$
If $$n\in N$$, then $$n^{3}+2n$$ is divisible by
  • $$2$$
  • $$3$$
  • $$5$$
  • $$6$$
If $$\displaystyle P\left ( n \right )=\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7n}{15}$$, then statement "$$P(n)$$ is a natural number" is true,
  • only for $$n> 1$$.
  • only for $$n$$ is an odd positive integer.
  • only for $$n$$ is an even positive integer.
  • $$n\in N$$
Let $$P\left ( n \right )= n^{3}-n$$, the largest number by which $$P\left ( n \right )$$ is divisible $$\forall $$ possible integral values of $$n$$ is
  • $$2$$
  • $$3$$
  • $$5$$
  • $$6$$
For every natural number n -
  • $$n\, >\, 2^{n}$$
  • $$n\, <\, 2^{n}$$
  • $$n\, / 2^{n}$$
  • $$n\, / 2^{2n}$$
If $$\displaystyle a_{n}=\sqrt{7+\sqrt{7+\sqrt{7+.....}}} $$ having $$n$$ radical signs, then by method of mathematical induction which of the following is true?
  • $$\displaystyle a_{n}>6,\forall n> 1$$
  • $$\displaystyle a_{n}>3,\forall n> 1$$
  • $$\displaystyle a_{n}>4,\forall n> 1$$
  • $$\displaystyle a_{n}<2,\forall n> 1$$
  • Both (A) & (R) are individually true & (R) is correct explanation of (A).
  • Both (A) & (R) are individually true but (R) is not the correct (proper) explanation of (A).
  • (A) is true but (R) is false.
  • (A) is false but (R) is true.
Let $$P(n)\, :\, n^{2}\, +\, n$$ is an odd integer. It is seen that truth of $$P(n)\, \Rightarrow$$ the truth of P(n + 1). Therefore, P(n) is true for all -
  • n > 1
  • n
  • n > 2
  • None of these
The inequality $$n!\, >\, 2^{n\, -\, 1}$$ is true - 
  • For all n > 1
  • For all n > 2
  • For all $$n\, \epsilon\, N$$
  • None of these
Let $$P\left ( n \right )= x^{2n-1}+y^{2n-1}$$ is divisible by $$x+y$$ as $$P\left ( 1 \right )$$ is true, then truth of $$P\left ( k+1 \right )$$ indicates
  • $$P\left ( n \right )$$ s divisible by $$x+y$$ only for odd positive integer
  • $$P\left ( n \right )$$ is divisible by $$x+y$$ only for positive even integer
  • $$P\left ( n \right )$$ is true $$\forall n\in N$$
  • $$P\left ( k \right )$$ is true
The sequence $$\displaystyle \left ( x_{n}n\geq 1 \right )$$ is defined by $$\displaystyle x_{1}=0 $$ and $$\displaystyle x_{n+1}=5x_{n}+\sqrt{24x^{2}_{n}+1} $$ for all $$\displaystyle n\geq 1.$$ Then all $$\displaystyle x_{n} $$ are 
  • Negative integers
  • Positive integers
  • Rational numbers
  • None of these
Let $$P\left ( n \right )=11^{n+2}+12^{2n+1}$$, then the least value of the following which $$P\left ( n \right )$$ is divisible by is
  • $$19$$
  • $$7$$
  • $$133$$
  • none of these
For positive integer n, $$3^{n} < n!$$ when
  • $$n \geq 6$$
  • $$n > 7$$
  • $$n \geq 7$$
  • $$n \leq 7$$
Let $$P(n) : n^2 + n$$ is an odd integer. It is seen that truth of $$P(n)\Rightarrow$$ the truth of P(n + 1). Therefore, P(n) is true for all
  • n > 1
  • n
  • n > 2
  • none of these
For natural number n, $$2^{n}\, (n - 1) ! <n^{n}$$, if.
  • $$n < 2$$
  • $$n > 2$$
  • $$n \geq 2$$
  • Never
For every positive integer
n, $$\displaystyle \frac{n^{7}}{7} + \frac{n^{5}}{5} + \frac {2n^{3}}{3} - \frac{n}{105}$$ is
  • an integer
  • a rational number
  • a negative real number
  • an odd integer
If $$P$$ is a prime number then $$n^{p} - n$$ is divisible by $$p$$ when $$n$$ is a 
  • natural number greater than 1
  • odd number
  • even number
  • None of these
The difference between an $$+$$ve integer and its cube, is divisible by
  • $$4$$
  • $$6$$
  • $$9$$
  • None of these
If n is a natural number then $$\left( \displaystyle \frac{n + 1}{2} \right)^{n}\, \geq n!$$ is true when.
  • n > 1
  • $$n \geq 1$$
  • n > 2
  • Never
For  every natural number $$n$$, $$n(n + 3)$$ is always :
  • multiple of $$4$$
  • multiple of $$5$$
  • even
  • odd
For all n $$\in$$ N, $$n^{4}$$ is less than
  • $$10^{n}$$
  • $$4^{n}$$
  • $$10^{10}$$
  • None of these
A student was asked to prove a statement by induction. He proved
(i) P(5) is true and
(ii) Trutyh of P(n) $$\Rightarrow$$ truth of p(n + 1), n$$\in$$N
On the basis of this, he could conclude that P(n) is true for
  • no n $$\in$$ N
  • all n $$\in$$ N
  • all n $$\geq$$ 5
  • None of these
For every positive integral value of n, $$3^n > n^3$$ when
  • n > 2
  • $$n\geq 3$$
  • $$n\geq 4$$
  • n < 4
For every positive integer $$n, \dfrac {n^7}{7}+\dfrac {n^5}{5}+\dfrac {2n^3}{3}-\dfrac {n}{105}$$ is
  • an integer
  • a rational number
  • a negative real number
  • an odd integer
$$P(n) : 3^{2n+2} -8n -9$$ is divisible by 64, is true for
  • all $$n\epsilon N \cup \left \{0\right \}$$
  • $$n\geq 2, n\epsilon N$$
  • $$n\epsilon N, n > 2$$
  • none of these
The smallest positive integer for which the statement $$3^{n+1} < 4^n$$ holds is
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
If x > 1, then the statement $$P(n) : (1 + x)^n > 1 + nx$$ is true for
  • all $$n\epsilon N$$
  • all n > 1
  • all n > 1 and $$x\neq 0$$
  • None of these
If n is a natural number then $$\left (\frac {n+1}{2}\right )^n \geq n!$$ is true when
  • n > 1
  • $$n\geq 1$$
  • n > 2
  • never
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers