Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Principle Of Mathematical Induction Quiz 4 - MCQExams.com

A student was asked to prove a statement by induction.
(i) P(5) is true and
(ii) Truth of P(n) truth of P(n+1), nϵN
On the basis of this, he could conclude that P(n) is true for
  • no nϵN
  • all nϵN
  • all n5
  • none of these
If nN, then x2n+1+y2n+1 is divisible by
  • x+y
  • xy
  • x2+y2
  • x2+xy
The inequality n!>2n1 is true
  • for all n>1
  • for all n>2
  • for all nϵN
  • none of these
For positive integer n, 10n2>81n when
  • n<5
  • n>5
  • n5
  • n>6
State which of the following statements is true 2161   is divisible by 
  • 11
  • 13
  • 17
  • 19
7 is a factor of 23n1 for all natural numbers n.
  • True
  • False
Let S(K)=1+3+5...+(2K1)=3+K2. Then which of the following is true
  • Principle of mathematical induction can be used to prove the formula
  • S(K)S(K+1)
  • S(K)S(K+1)
  • S(1) is correct
The statement P(n) "1×1!+2×2!+3×3!+...+n×n!=(n+1)!1" is
  • True for all n > 1
  • Not true for any n
  • True for all nϵN
  • None of these
If a,b and n are natural numbers then a2n1+b2n1 is divisible by
  • a+b
  • ab
  • a3+b3
  • a2+b2
Let a,b,c and d be any four real numbers. Then, an+bn=cn+dn holds for any natural number n, if

(This question has some ambiguity, but appeared in WBJEE 2015 exam).
  • a+b=c+d
  • ab=cd
  • a+b=c+d,a2+b2=c2+d2
  • ab=cd,a2b2=c2d2
For any integer n1, the sum nk=1k(k+2) is equal to
  • n(n+1)(n+2)6
  • n(n+1)(2n+1)6
  • n(n+1)(2n+7)6
  • n(n+1)(2n+9)6
For any +ve integer n,n3+2n is always divisible by
  • 3
  • 7
  • 5
  • 6
The last digit in 7300 is:
  • 7
  • 9
  • 1
  • 3
Let A=(111011001). Then for positive integer n,An is
  • (1nn20n2n00n)
  • (1nn(n+12)01n001)
  • (1n2n0nn200n2)
  • (1n2n10n+12n200n+12)
The number 4n+15n1 is a multiple of 9 for any natural n.
  • True
  • False
State true or false 
1+ xa1+x(x+a1)a1a2+...+x(x+a1)(x+a2)....(x+an1)a1a2a3...an =(x+a1)(x+a2)....(x+an)a1a2a3...an
  • True
  • False
Using the principle of mathematical induction ,  nϵN if 
y=cot1 x then     
yn=(1)n(n1)!sinn ysinny.   
  • True
  • False
Prove by mathematical induction that 
n. 1 + ( n - 1) 2 + (n - 2) 3 + ..... + 2 (n -1)  + 1.n = n6 (n + 1)(n + 2) 
  • True
  • False
State the whether the statement id True/False

The given relation is  (1+x)n(1+nx) if x1
  • True
  • False

If A=(cosθisinθisinθcosθ), where i=1, then by principle of Mathematical Induction then An=[cosnθisinnθisinnθcosnθ].

  • True
  • False
State whether the statement is true/false

If a and b are 2 +ve no. such that a>b then one of the two numbers a+b2 and ab2is even or odd
  • True
  • False
State true or false.
13+33+53+...+(2n1)3=n2(2n21) n is a natural number
  • True
  • False
State true or false 1.3+(2.3)2+3.33+.....+n.3n=(2n1)3n+1+34
  • True
  • False
State whether following statement is true or false.
By using the principle of mathematical induction we can proove that n(n+1)(n+5) is a multiple of 3.
  • True
  • False
For every positive integer n, 7n3n is divisible by 4.
  • True
  • False
1.3+(2.3)2+(3.3)3+....+(n.3)n=(2n1)3n+1+34

  • True
  • False
State True or False
7n2n is divisible by 5.
  • True
  • False
52n+224n25 is divisible by 576 for all nN by using principle of mathematical induction.
  • True
  • False
State whether the following statement is true or false.
13+33+53+...+(2n1)3=n2(2n21)
  • True
  • False
 Using the principle of mathematical induction for all nN it can be proved 1+2+3+...+n<18(2n+1)2.
  • True
  • False
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers