Explanation
$$ \textbf{ Step 1: Observing the difference between the adjacent numbers}$$
$$ \text{If we notice the adjacent numbers, we see } 4\times 2 -1 =7$$
$$ \text{Similarly, } 7 \times 2-1=13$$
$$ \text{Similarly, } 13\times2 -1=25$$
$$ \text{Similarly, } 25\times2-1=49$$
$$ \textbf{Step 2: Calculating the missing number}$$
$$ \text{Thus, looking at the above observations, we can conclude the missing number will be:}$$
$$ \Rightarrow 49\times 2-1=97$$
$$\textbf{Thus, the missing number is D 97}$$
$$ \textbf{Step 1: Observing the difference between the adjacent numbers}$$
$$\textbf{Thus, the missing number is D .}$$
Given that,
$$ {{C}_{1}}+2.{{C}_{2}}+3.{{C}_{3}}+.............n{{C}_{n}} $$
$$ =n+2\times \dfrac{n\left( n-1 \right)}{2!}+3\times \dfrac{n\left( n-2 \right)\left( n-3 \right)}{3!}.......n\times 1 $$
$$ =n+\dfrac{n\left( n-1 \right)}{1}+\dfrac{n\left( n-2 \right)\left( n-3 \right)}{2}.......1 $$
$$ =n[1+\dfrac{\left( n-1 \right)}{1}+\dfrac{\left( n-2 \right)\left( n-3 \right)}{2}.......1 $$
Put, n-1=N
$$ =n[1+\dfrac{N}{1}+\dfrac{\left( N+1 \right)\left( N-1 \right)}{2}.......1 $$
$$ =n\left( {}^{N}{{C}_{0}}+{}^{N}{{C}_{1}}+{}^{N}{{C}_{2}}...............{}^{N}{{C}_{N}} \right) $$
$$ =n{{.2}^{N}} $$
$$ =n{{.2}^{n-1}} $$
Hence, this is the answer.
Please disable the adBlock and continue. Thank you.