Explanation
The value of11!+1+22!+1+2+33!+1+2+3+44!+\cods upto infinite terms is equal to
Given that,
a_1=2, r=\dfrac{a_{n+1}}{a_n}=\dfrac{1}{3}
\sum\nolimits_{r=1}^{20}{{{a}_{r}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}}
=\dfrac{2\left[ 1-{{\left( \dfrac{1}{3} \right)}^{20}} \right]}{1-\dfrac{1}{3}} [n=20]
=\dfrac{2\left[ 1-{{\left( \dfrac{1}{3} \right)}^{20}} \right]}{\dfrac{2}{3}}
=3\left[ 1-{{\left( \dfrac{1}{3} \right)}^{20}} \right]
Hence this is the correct answer.
Series: 1+\dfrac{3}{{x}^{1}}+\dfrac{9}{{x}^{2}}+\dfrac{27}{{x}^{3}}+……\infty
This is a G.P
With Q A=1
r=\dfrac{3}{x}
{ s }_{ n }=\dfrac { A }{ 1-r } =\dfrac { 1 }{ 1-\dfrac { 3 }{ x } } \quad \left\{ \because r<1 \right\}
{s}_{n}=\dfrac{1\left(x\right)}{x-3}...... 1
Also {s}_{n}=\dfrac{A}{r-1}=\dfrac{1}{3.1}=\dfrac{x}{3-x}......2
\left\{ \because r\quad >\quad 1 \right\}
From 1 and 2
We infer:
{s}_{n}=\dfrac{1\left(-x\right)}{x-3} is true for
\left\{ 3\quad <\quad x \right\}
And
{s}_{n}=\dfrac{x}{3-x} is true then
\left\{ x\quad <\quad 3 \right\}
Option x\left\{ x<-3\& x>3 \right\}
Please disable the adBlock and continue. Thank you.