Loading [MathJax]/jax/element/mml/optable/MathOperators.js

CBSE Questions for Class 11 Engineering Maths Sequences And Series Quiz 8 - MCQExams.com

The value of S=6k=1(sin2πk7icos2πk7) ?
  • 1
  • 0
  • i
  • i

 The value of
11!+1+22!+1+2+33!+1+2+3+44!+\cods upto infinite terms is equal to 

  • (a)3e2
  • (b)3e1
  • (c)2e+1
  • (d)5e2
Find sum 12+32+52+...+(2n1)2
  • n(2n+1)(2n+1)3.
  • n(2n1)(2n+1)3.
  • 2n(2n1)(2n+1)3.
  • None of these
The sum to the first n terms of the series  12+34+78+1516+ is 9+210.  The value of n is
  • 10
  • 9
  • 8
  • none of these
If 20i=1sin1 xi=10πthen20i=1xi is equal to 
  • 20
  • 10
  • 0
  • 1
What is the sum of the series 1324+1724+11124+.....+13924
  • 1041
  • 4041
  • 2041
  • 3041
Number of identical terms in the sequence 2,5,8,11,___ upto 100 terms and 3,5,7,9,11____ upto 100 terms are
  • 17
  • 33
  • 50
  • 147
The value of the expression (1221)+(1421)+(1621)+...+(12021) is
  • 919
  • 1019
  • 1021
  • 1121
67,84,95,.,133,158
  • 116
  • 129
  • 108
  • 111
Let Sn=11+2008n+12+2008n+...+12009n. Then limnSn equals?
  • log(12008)
  • log(1+12008)
  • log(12009)
  • log(1+12009)
Find the value of ?. 
1052324_a17d200592ec4c5eb92acd3b598dee6f.png
  • 125
  • 25
  • 625
  • 156
If a2a3a1a4=a2+a3a1+a4=3(a2a3a1a4) then a1,a2 and a3 are in which progression?
  • A.P.
  • G.P.
  • H.P.
  • None of these
n=55n=5
  • True
  • False
The sum of all 2-digit numbers divisible by 5 is _________?
  • 1035
  • 1245
  • 1230
  • 945
If Sr=|2rxn(n+1)6r21yn2(2n+3)4r32nrzn3(n+1)| then nr=1Sr
does not depends on
  • x
  • y
  • n
  • all of these
If (12t1)+(22t2)+.......+(n21), then tn is
  • n2
  • n1
  • n+1
  • n
Insert the missing number in the given series : 0,4,18,48,?,180 
  • 58
  • 68
  • 84
  • 100
Ten students of the physics department decided to go on a educational trip.They hired a mini bus for the trip, but the bus can only carry eight students at a time and each student goes at least once. Find the minimum number of trips the bus has to make so that each students can go for equal number of trips.
  • 5
  • 4
  • 6
  • 8
For a sequence \left\{ { a }_{ n } \right\} ,{ a }_{ 1 }=2 and \dfrac { { a }_{ n+1 } }{ { a }_{ n } } =\dfrac { 1 }{ 3 }. Then \sum _{ r=1 }^{ 20 }{ { a }_{ r } } is
  • \dfrac {20}{2}[4+19\times 3]
  • 3(1-\dfrac {1}{3^{20}})
  • 2(1-3^{20})
  • (1-\dfrac {1}{3^{20}})
Number of rectangles in the grid shown which are not squares is?

  • 160
  • 162
  • 170
  • 185
1,2,1,4,3,8,9,5,27,16,?,?,?
  • 7,36,64
  • 7,25,64
  • 9,25,64
  • 7,25,49
If \underset{r = 1}{\overset{n}{\sum}} r (r + 1) (2r + 3) = an^4 + bn^3 + cn^2 + dn + e, then 
  • a + c = b + d
  • e = 0
  • a, b - \dfrac{2}{3}, \, c - 1 are in A. P.
  • \dfrac{c}{a} is an integer
\displaystyle \sum^{n}_{r=0} (-1)^r \,{^nC_r}. \dfrac{(1 + r \ell n 10)}{(1 + \ell n 10^n)^r} =
  • 0
  • \dfrac{1}{2}
  • 1
  • none\ of\ these
Evaluate the definite integral:
\displaystyle\int_{0}^{\pi/2}\dfrac{\cos^{2}x}{1+3\sin^{2}x}\ dx
  • \pi /4
  • \pi /2
  • \pi /6
  • \pi /3
 \cfrac { 7 }{ 5 } \left( 1+\cfrac { 1 }{ { 10 }^{ 2 } } +\cfrac { 1.3 }{ 1.2 } .\cfrac { 1 }{ { 10 }^{ 4 } } +\cfrac { 1.3.5 }{ 1.2.3 } .\cfrac { 1 }{ { 10 }^{ 6 } } +....\infty \right) =\sqrt { 2 }
  • True
  • False
The sum 2 \times 5 + 5 \times 9 + 8 \times 13 +  \ldots 10 term is 
  • 4500
  • 4555
  • 5454
  • None of these
 1+\cfrac{1}{4}+\cfrac{1.3}{4.8}+\cfrac{1.3.5}{4.8.12}+.....\infty=\sqrt{2}
  • True
  • False
A series is given as: 4+7+10+13+16+..... Find the sum of the series up to 10 terms.
  • 110
  • 125
  • 162
  • 175
The unit's place digit in (1446)^{4n + 3} is
  • n
  • 0
  • 6
  • None of these
The sum of the infinite series, { 1 }^{ 2 }-\dfrac { { 2 }^{ 2 } }{ 5 } +\dfrac { { 3 }^{ 2 } }{ { 5 }^{ 2 } } -\dfrac { { 4 }^{ 2 } }{ { 5 }^{ 3 } } +\dfrac { { 5 }^{ 2 } }{ { 5 }^{ 4 } } -\dfrac { { 6 }^{ 2 } }{ { 5 }^{ 3 } } + ..........  is
  • \dfrac { 1 }{ 2 }
  • \dfrac { 25 }{ 24 }
  • \dfrac { 25 }{ 54 }
  • \dfrac { 125 }{ 252 }
The sum of infinity of the series \dfrac{1}{1} + \dfrac{1}{1 + 2} + \dfrac{1}{1+2+3}+______ is equal to:
  • 2
  • \cfrac{5}{2}
  • 3
  • None of these
Solve then inequality 
\dfrac {x-1}{x}\geq 2
  • x\leq 1
  • x\leq -1
  • x\leq0
  • x \in R
The sum of the series 1+2.2+3.2^{2}+4.2^{3}+5.2^{4}+.+100.2^{99} is  ?
  • 99.2^{100} -1
  • 100.2^{100} +1
  • 99.2^[100}
  • 99.2^{100}+1
If { S }_{ n }=\overset { n }{ \underset { r=1 }{ \Sigma  }  } { t }_{ r }=\dfrac { 1 }{ 6 } n\left( 2{ n }^{ 2 }+9n+13 \right) , then \overset { n }{ \underset { r=1 }{ \Sigma  }  } \sqrt { { t }_{ r } } equals ?
  • \dfrac { 1 }{ 2 } n\left( n+1 \right)
  • \dfrac { 1 }{ 2 } n\left( n+2 \right)
  • \dfrac { 1 }{ 2 } n\left( n+3 \right)
  • \dfrac { 1 }{ 2 } n\left( n+5 \right)
If a_n=n(n!), then \displaystyle\sum^{100}_{r=1} a_r is equal?
  • 101!
  • 100!-1
  • 101!-1
  • 101!+1
If a_{1}=a_{2}=2,a_{n}=a_{n-1}-1(n > 2) then a_{5} is ?
  • 1
  • -1
  • 0`
  • -2
The sum of the series 1+\dfrac{1}{4\times 2!}+\dfrac{1}{16\times 4!}+\dfrac{1}{64\times 6!}+....\infty is?
  • \dfrac{e+1}{\sqrt{e}}
  • \dfrac{e-1}{\sqrt{e}}
  • \dfrac{e+1}{2\sqrt{e}}
  • \dfrac{e-1}{2\sqrt{e}}
If {x}_{1},{x}_{2},. . . . .,{x}_{n} are any real number and n is any positive integer, then ?
  • n\sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 }<{ \left( \sum _{ i=1 }^{ n }{ { x }_{ i } } \right) }^{ 2 } }
  • n\sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 }\ge { \left( \sum _{ i=1 }^{ n }{ { x }_{ i } } \right) }^{ 2 } }
  • n\sum _{ i=1 }^{ n }{ { x }_{ i }^{ 2 }\ge n{ \left( \sum _{ i=1 }^{ n }{ { x }_{ i } } \right) }^{ 2 } }
  • None\ of\ the\ above
Sum  of first n terms of the series \frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + .... is equal to 
  • {2^n} - n - 1
  • 1 - {2^{ - n}}
  • n + {2^{ - 2}} - 1
  • none of these
The nth term of the series 4, 14, 30, 52, 80, 114, ... is
  • n^{2} + n + 2
  • 3n^{2} + n
  • 3n^{2} - 5n + 2
  • (n + 1)^{2}
The sum of (n+1) terms of \frac { 1 }{ 1 } +\frac { 1 }{ 1+2 } +\frac { 1 }{ 1+2+3 } +.......is
  • \frac { n }{ n+1 }
  • \frac { 2n }{ n+1 }
  • \frac { 2 }{ n\left( n+1 \right) }
  • \frac { 2\left( n+1 \right) }{ n+2 }
The sum of the series \dfrac {5}{1 \cdot 2 \cdot 3}+\dfrac {7}{3 \cdot 4 \cdot 5}+\dfrac {9}{5 \cdot 6 \cdot 7}+.... is
  • \log \dfrac {8}{e}
  • \log \dfrac {e}{8}
  • \log2
  • \log \dfrac {1}{2}
If the sum of the series 1+\dfrac{3}{x}+\dfrac{9}{x^{2}}+\dfrac{27}{x^{3}}+.... to \infty is a finite number then 
  • x>3
  • x<-3
  • x<-3\ or\ x>3
  • None\ of\ these
The sum of the series 1^{3}+3^{3}+5^{3}+.... upto 20 terms is
  • 319600
  • 321760
  • 306000
  • 347500
The value of \sum_{n=1}^{\infty}\dfrac{1}{(3n-2)(3n+1)} is equal to \dfrac{p}{q}, where p and q are relatively prime natural numbers. Then the value of (p^2+q^2) is equal to
  • 4
  • 9
  • 10
  • 13
Select the missing number from the given responses ?
1152619_1c6c0bc365ab41c2a693e97a6343ff43.PNG
  • 15
  • 10
  • 12
  • 17
If abc=1, then the value of \dfrac{1}{1+a+b^{-1}}+\dfrac{1}{1+b+c^{-1}}+\dfrac{1}{1+c+a^{-1}} is
  • abc
  • a
  • 1
  • 3
The sum 1 + 3 + 7 + 15 + 31 +  \ldots to n term is 
  • {2^n} - 2 - n
  • {2^{n - 1}} - 1 - n
  • {2^{n + 1}} - 2 - n
  • None of these
Find: 6,25,62,123,(?),341
  • 216
  • 214
  • 215
  • 218
Sum of n terms of the series 8+88+888+. equals
  • \dfrac {8}{18}[10^{n+1}-9n-10]
  • \dfrac {8}{18}[10^{n}-9n-10]
  • \dfrac {8}{18}[10^{n+1}+9n-10]
  • None\ of\ these
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers