Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Engineering Maths Sequences And Series Quiz 9 - MCQExams.com

The value of n=2(11n2) equals 
  • ln3
  • 0
  • ln2
  • ln5
solve that :- 
1179763_5300b9e093224c43a86f8c6d71177d45.png
  • 14
  • 18
  • 11
  • 26
The numbers log18012,log216012,log2592012 are in
  • AP
  • GP
  • HP
  • None of these
If [x] denotes the greates integer x, then [23]+[23+199]+[23+299]+....+[23+9899]=
  • 99
  • 98
  • 66
  • 65
If (1+ax)n=1+8x+24x2+...; then ana+n is equal to
  • 3
  • 13
  • 3
  • 13
If S=1222+3242.... upto n terms and n is even, then S equals _____
  • n(n+1)2
  • n(n1)2
  • n(n+1)2
  • n(n1)2
The sum mi=0(10i)(20mi) (where (pq)=0 if p<q) is maximum where m is
  • 5
  • 10
  • 15
  • 20
The series 1222+3242+.....+9921002= _____
  • 5050
  • 5050
  • 11000
  • 11000
If x and y are the number of possibilities that A can assume such that the unit digit of A and A3 are same and the unit digit of A2 and A3 are same respectively ,then the value of xy is (where A is a single digit number)
  • 4
  • 2
  • 3
  • 5
[1247211052464?24] 
  • 40
  • 83
  • 62
  • 16
In a triangle ABC
acos2(C2)+ccos2(A2)=3b2, then the sides a,b,c 
  • Satisfy a+b=c
  • are in A.P.
  • are in G.P.
  • are in H.P.
The value of n1r=1sin2rπn is equal to
  • n
  • n2
  • n+1
  • Zero
The sum of the series 10.nC0+102.nC1+103.nC2+...10n+1.nCn is 
  • 11n
  • 10.11n
  • 11n+1
  • 11n1
1+(1+a)x+1(1+a+a2)x2+(1+a+a2+a3)x3+where0<a,x<1,is
  • 1(1x)(1a)
  • 1(1x)(1ax)
  • 1(1a)(1ax)
  • None of these
The sum of the series nr=1(1)r1.nCr(ar) is
  • a
  • 0
  • n.2n1+a
  • None of these
1.3.4+2.5.8+3.6.9+ upto n terms is equal to ________ .
  • n(n+1)(n+2)6
  • n(n+1)(3n2+23n+46)12
  • n(27n3+90n2+45n5)4
  • n(n+1)(2n+1)6
  • None of these
The sum of the series  
1+2.2+3.22+4.23+5.24+...+1000.2999 is
  • 999.29991
  • 999.210001
  • 999.21000+1
  • 999.2999+1
nr=1r1p=0 nCrrCp2p is equal to?
  • 4n3n+1
  • 4n3n1
  • 4n3n+2
  • 4n3n
If |x|<1 , then the sum of series 1+2x+3x2+4x3+......... will be
  • 11x
  • 11+x
  • 1(1+x)2
  • 1(1x)2
12.5+15.8+18.11+..n terms =
  • 3n2(3n+2)
  • 3n3n+2
  • n2(3n+2)
  • n3n+2
The sum of the series 513+55132+555133+......... is 
  • 6536
  • 6532
  • 2536
  • none of these
Sum to n terms the following series :
  • 5 + 11 + 19 + 29 + 41 + .......
  • 3 + 7 + 14 + 24 + 37 +......
  • 6 + 9 + 16 + 27 + 42 + .....
  • 5 + 7 + 13 + 31 + 85 + ....
2n+1k=1(1)k1k2= 
  • (n+1)(2n+1)
  • (n+1)(2n1)
  • (n1)(2n1)
  • (n1)(2n+1)
If S=1+11+2+11+2+3+11+2+3+4......, then
  • Sn=2nn+1
  • Sn=2nn1
  • S=2
  • S=1
If S = \tan ^ { - 1 } \left( \frac { 1 } { n ^ { 2 } + n + 1 } \right) + \tan ^ { - 1 } \left( \frac { 1 } { n ^ { 2 } + 3 n + 3 } \right) + \ldots + \tan ^ { - 1 } \left( \frac { 1 } { 1 + ( n + 19 ) ( n + 20 ) } \right) then \tan S is equal to
  • \frac { 20 } { 401 + 20 n }
  • \frac { n } { n ^ { 2 } + 20 n + 1 }
  • \frac { 20 } { n ^ { 2 } + 20 n + 1 }
  • \frac { n } { 401 + 20 n }
7, 11, 23, 51, 103 ?
  • 186
  • 188
  • 185
  • 187
  • none of these
The value of the expression \sum _{ r=0 }^{ n }{ { (-1) }^{ r } } \left( \dfrac { ^nC_r  }{^{r+3}C_r  }  \right) is
  • \dfrac{n(n+1)}{2}
  • \dfrac{n+3}{3}
  • \dfrac{3}{n+3}
  • \dfrac{n+2}{2}
S=\tan^{-1}\left(\dfrac{1}{n^2+n+1}\right)+\tan^{-1}\left(\dfrac{1}{n^2+3n+3}\right)+.....+\tan^{-1}\left(\dfrac{1}{1+(n+19)(n+20)}\right), then \tan S is equal to?
  • \dfrac{20}{401+20n}
  • \dfrac{n}{n^2+20n+1}
  • \dfrac{20}{n^2+20n+1}
  • \dfrac{n}{401+20n}
13, 16, 22, 33, 51 ?
  • 89
  • 78
  • 102
  • 69
  • none of these
Evaluate:-
If \sum\limits_{r - 0}^n {{{\left\{ {\frac{{^n{C_{r - 1}}}}{{^n{C_r}{ + ^n}{C_{r - 1}}}}} \right\}}^3} = \frac{{25}}{{24}}}
  • 3
  • 6
  • 4
  • 5
655, 439, 314, 250, 223 ?
  • 215
  • 210
  • 195
  • 190
  • none of these
If the expansion of \left( x+a \right) ^{ n } if the sum of odd terms be P & sum of even terms be Q, prove that
  • { P }^{ 2 }-{ Q }^{ 2 }=({ x }^{ 2 }-{ a }^{ 2 })^{ n }
  • 4PQ=(x+a)^{ 2n }-(x-a)^{ 2n }
  • P^2-Q^2=(x^2+a^2)^{n}
  • None\ of\ these
Sum of the series
S=1^{2}-2^{2}+3^{2}-4^{2}+..... -2000^{2}+2003^{2} is
  • 2007006
  • 1005004
  • 2000506
  • None
Find the next term
210,209,205,196,180,?
  • 138
  • 77
  • 155
  • 327
Determine the next term 20, 24, 33, 49, 74, 110, ?
  • 133
  • 147
  • 159
  • 163
  • 171
Find the next term of the series 1728, 2744, 4096, 5832, 8000, 10648, ?
  • 2167
  • 13824
  • 15625
  • 9261
  • 17576
4,6,12,30,90,315,?
  • 945
  • 1102
  • 1260
  • 1417.5
  • None\ of\ these
Find next term
462,552,650,756,870,992,?
  • 1040
  • 1122
  • 1132
  • 105
Find the missing number from the given alternatives.
1270336_822c03df2be64fbfb6d26b105230fb9f.png
  • 39,116
  • 52,156
  • 30,117
  • 31,116
8, 31, 122, 485, 1936, 7739, ?
  • 30950
  • 46430
  • 34650
  • 42850
  • 38540
The sum of infinite series \begin{vmatrix} 1 & 2 \\ 6 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 2 }  & 2 \\ 2 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 4 }  & 2 \\ \frac { 2 }{ 3 }  & 4 \end{vmatrix}+.........
  • -10
  • 0
  • 10
  • \infty
If \dfrac{\pi}{4}-1+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{1}{13}+=0 then value of \dfrac{1}{1\times3}+\dfrac{1}{5\times7}+\dfrac{1}{9\times11}+\dfrac{1}{13\times15}+.. is
  • \dfrac{\pi}{8}
  • \dfrac{\pi}{6}
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{34}
Let t_{r}=\frac{r}{1+r^{2}+r^{4}} then, \lim_{n\rightarrow \infty }\sum_{r=1}^{n}t_{r} equals
  • \frac{1}{4}
  • 1
  • \frac{1}{2}
  • None of these
The sum to n terms of the series 
\dfrac {3}{1^{2}}+\dfrac {5}{1^{2}+2^{2}}+\dfrac {7}{1^{2}+2^{2}+3^{2}}+......... is 
  • \dfrac {6n}{n+1}
  • \dfrac {9n}{n+1}
  • \dfrac {12n}{n+1}
  • \dfrac {3n}{n+1}
499, 622, 868, 1237, 1729, 2344, ?
  • 3205
  • 3082
  • 2959
  • 3462
  • 2876
The sum \dfrac{1}{1+1^{2}+1^{4}}+\dfrac{2}{1+2^{2}+2^{4}}+\dfrac{3}{1+3^{2}+3^{4}}+...+\dfrac{99}{1+99^{2}+99^{4}} lies between

  • 0.46 and 0.47
  • 0.52 and 1.0
  • 0.48 and 0.49
  • 0.49 and 0.50
Find : 12,15,21,24,30,33 , ? , ?
  • 39,42
  • 37,42
  • 38,47
  • 39,51
Find the missing number :

1306229_30e87c7078374916b3c099fafe3684b1.png
  • 125
  • 90
  • 105
  • 225
23,29,47,75 , ?
  • 87
  • 93
  • 110
  • 117
The value of \dfrac{1}{6.10}+\dfrac{1}{10.14}+\dfrac{1}{14.18}+....\infty equals to
  • \dfrac{1}{(24)^2}
  • \dfrac{1}{6}
  • \dfrac{1}{24}
  • \dfrac{1}{(24)^3}
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers