Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
MCQExams
0:0:2
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Sequences And Series Quiz 9 - MCQExams.com
CBSE
Class 11 Engineering Maths
Sequences And Series
Quiz 9
The value of
∞
∑
n
=
2
(
1
−
1
n
2
)
equals
Report Question
0%
−
l
n
3
0%
0
0%
−
l
n
2
0%
−
l
n
5
solve that :-
Report Question
0%
14
0%
18
0%
11
0%
26
Explanation
Given,
Image
A
4
+
2
+
5
+
3
=
14
×
2
=
28
Image
B
7
+
5
+
4
+
3
=
19
×
2
=
38
∴
Image
C
2
+
1
+
3
+
7
=
13
×
2
=
26
The numbers
log
180
12
,
log
2160
12
,
log
25920
12
are in
Report Question
0%
AP
0%
GP
0%
HP
0%
None of these
If
[
x
]
denotes the greates integer
≤
x
, then
[
2
3
]
+
[
2
3
+
1
99
]
+
[
2
3
+
2
99
]
+
.
.
.
.
+
[
2
3
+
98
99
]
=
Report Question
0%
99
0%
98
0%
66
0%
65
Explanation
[
2
3
]
=
0
[
2
3
+
1
99
]
=
0
[
2
3
+
2
99
]
=
0
.
.
.
.
.
.
[
2
3
+
33
99
]
=
[
2
3
+
1
3
]
=
[
1
]
=
1
[
2
3
+
34
99
]
=
[
1
+
1
99
]
=
1
[
2
3
+
98
99
]
=
[
1
+
65
99
]
=
1
So, the sum is
1
+
1
+
1
+
.
.
.
.
.
.
.
.
.
66
times
=
66
If
(
1
+
a
x
)
n
=
1
+
8
x
+
24
x
2
+
.
.
.
;
then
a
−
n
a
+
n
is equal to
Report Question
0%
3
0%
−
1
3
0%
−
3
0%
1
3
Explanation
(
1
+
a
x
)
n
=
1
+
n
(
a
x
)
+
n
C
2
(
a
x
)
2
+
n
C
3
(
a
x
)
3
.
.
.
.
According to question
(
1
+
a
x
)
n
=
1
+
8
x
+
24
x
2
+
.
.
.
⇒
a
n
=
8
a
2
=
(
n
)
(
n
−
1
)
2
=
24
⇒
a
2
(
n
)
(
n
−
1
)
=
48
⇒
a
(
n
−
1
)
=
6
⇒
n
n
−
1
=
8
6
=
4
3
⇒
n
=
4
,
⇒
a
=
2
∴
a
−
n
a
+
n
=
2
−
4
2
+
4
=
−
2
6
=
−
1
3
If
S
=
1
2
−
2
2
+
3
2
−
4
2
.
.
.
.
upto
n
terms and
n
is even, then
S
equals _____
Report Question
0%
n
(
n
+
1
)
2
0%
n
(
n
−
1
)
2
0%
−
n
(
n
+
1
)
2
0%
−
n
(
n
−
1
)
2
Explanation
S
=
1
2
−
2
2
+
3
2
−
4
2
.
.
.
.
.
.
.
.
.
upto
n
term
=
(
1
−
2
)
(
1
+
2
)
+
(
3
−
4
)
(
3
+
4
)
+
.
.
.
.
.
.
+
(
n
−
1
−
n
)
(
n
−
1
+
n
)
=
−
(
1
+
2
+
3
+
4
+
.
.
.
.
.
+
n
)
S
=
−
n
(
n
+
1
)
2
The sum
m
∑
i
=
0
(
10
i
)
(
20
m
−
i
)
(where
(
p
q
)
=
0
if
p
<
q
) is maximum where
m
is
Report Question
0%
5
0%
10
0%
15
0%
20
The series
1
2
−
2
2
+
3
2
−
4
2
+
.
.
.
.
.
+
99
2
−
100
2
=
_____
Report Question
0%
−
5050
0%
5050
0%
11000
0%
−
11000
Explanation
The sum of nth term of the series is given as
S
=
(
−
1
)
n
+
1
n
(
n
+
1
)
2
Here
n
=
100
So,
S
=
(
−
1
)
100
+
1
100
(
100
+
1
)
2
=
(
−
1
)
10100
2
=
−
5050
If
x
and
y
are the number of possibilities that
A
can assume such that the unit digit of A and
A
3
are same and the unit digit of
A
2
and
A
3
are same respectively ,then the value of
x
−
y
is (where
A
is a single digit number)
Report Question
0%
4
0%
2
0%
3
0%
5
Explanation
Here, according to the question
if
A
=
1
, then
A
3
=
1
,
We see that unit digit number of
A
and
A
3
are same.
for,
A
=
2
⇒
A
3
=
8
,
, unit digits are not same
A
=
3
⇒
A
3
=
27
,
unit digits are not same
A
=
4
⇒
A
3
=
64
,
unit digits are same
A
=
5
⇒
A
3
=
125
,
unit digits are same
A
=
6
⇒
A
3
=
216
,
unit digits are not same
A
=
7
⇒
A
3
=
343
,
unit digits are not same
A
=
8
⇒
A
3
=
512
,
unit digits are not same
A
=
8
⇒
A
3
=
512
,
unit digits are same
So, there are five possible solutions where unit digits of
A
and
A
3
are same.
∴
x
=
5
Again, if we take
A
=
1
,
A
2
=
1
,
A
3
=
1
, unit digits are same
A
=
2
⇒
A
2
=
4
,
A
3
=
8
,
unit digits are not same
A
=
3
⇒
A
2
=
9
,
A
3
=
27
,
unit digits are not same
A
=
4
⇒
A
2
=
16
,
A
3
=
64
,
unit digits are not same
A
=
5
⇒
A
2
=
25
,
A
3
=
125
,
unit digits are same
A
=
6
⇒
A
2
=
36
,
A
3
=
216
,
unit digits are same
A
=
7
⇒
A
2
=
49
,
A
3
=
343
,
unit digits are not same
A
=
8
⇒
A
2
=
64
,
A
3
=
512
,
unit digits are not same
A
=
9
⇒
A
2
=
81
,
A
3
=
729
unit digits are not same
Here, we can see that there are three possible solutions where unit digits of
A
2
,
A
3
are same.
So,
y
=
3
Hence,
x
−
y
=
5
−
3
=
2.
[
12
47
21
10
52
4
64
?
24
]
Report Question
0%
40
0%
83
0%
62
0%
16
Explanation
[
12
47
21
10
52
4
64
?
24
]
We can see that dividing third number in each row with second digit of middle number and multiplying with first digit gives first member.
Similarly, out of
4
options, dividing
24
by
3
and multiplying by
8
gives
64
.
⇒
Option
(
B
)
.
In a triangle
A
B
C
,
a
c
o
s
2
(
C
2
)
+
c
c
o
s
2
(
A
2
)
=
3
b
2
, then the sides
a
,
b
,
c
Report Question
0%
Satisfy
a
+
b
=
c
0%
are in
A
.
P
.
0%
are in
G
.
P
.
0%
are in
H
.
P
.
Explanation
a
cos
2
(
C
2
)
+
C
cos
2
(
A
2
)
=
3
b
2
a
[
1
+
cos
C
2
]
+
C
[
1
+
cos
A
2
]
=
3
b
2
a
2
+
c
2
+
1
2
[
a
cos
C
+
C
cos
A
]
=
3
b
2
a
+
c
+
a
cos
C
+
c
cos
A
=
3
b
2
R
sin
A
+
2
R
sin
C
+
2
R
sin
A
cos
C
+
2
R
sin
C
cos
A
=
3
(
2
R
)
(
sin
B
)
sin
A
+
sin
C
+
sin
(
A
+
C
)
=
3
sin
(
B
)
A
+
B
+
C
=
π
⇒
sin
(
A
+
C
)
=
sin
B
sin
A
+
sin
C
+
sin
B
=
3
sin
(
B
)
sin
A
+
sin
C
=
2
sin
B
2
R
sin
A
+
2
R
sin
C
=
2
R
sin
B
a
+
c
=
2
b
∴
a
,
b
,
c
are an
A
.
P
The value of
n
−
1
∑
r
=
1
sin
2
r
π
n
is equal to
Report Question
0%
n
0%
n
2
0%
n
+
1
0%
Z
e
r
o
The sum of the series
10.
n
C
0
+
10
2
.
n
C
1
+
10
3
.
n
C
2
+
.
.
.10
n
+
1
.
n
C
n
is
Report Question
0%
11
n
0%
10.11
n
0%
11
n
+
1
0%
11
n
−
1
Explanation
→
10
(
n
C
0
+
10.
n
C
1
+
.
.
.
+
10
n
n
C
n
)
=
10
(
n
∑
r
=
1
n
C
r
(
10
)
r
(
1
)
n
−
r
)
=
10
(
1
+
10
)
n
=
10.11
n
=
(
B
)
1
+
(
1
+
a
)
x
+
1
(
1
+
a
+
a
2
)
x
2
+
(
1
+
a
+
a
2
+
a
3
)
x
3
+
−
−
−
−
−
where
0
<
a
,
x
<
1
,
is
−
Report Question
0%
1
(
1
−
x
)
(
1
−
a
)
0%
1
(
1
−
x
)
(
1
−
a
x
)
0%
1
(
1
−
a
)
(
1
−
a
x
)
0%
None of these
Explanation
We have,
1
+
(
1
+
a
)
x
+
1
(
1
+
a
+
a
2
)
x
2
+
(
1
+
a
+
a
2
+
a
3
)
x
3
+
.
.
.
.
.
.
.
.
.
.
1
1
−
a
[
(
1
+
a
)
+
(
1
−
a
2
)
x
+
(
1
−
a
3
)
x
2
+
(
1
−
a
4
)
x
3
.
.
.
.
.
.
.
.
.
.
]
1
1
−
a
[
1
+
x
+
x
2
+
x
3
+
.
.
.
.
.
.
.
.
.
−
(
a
+
a
2
x
+
a
3
x
2
+
a
4
x
3
+
.
.
.
.
)
]
1
1
−
a
[
1
1
−
x
−
a
1
−
a
x
]
1
1
−
a
[
1
−
a
x
−
a
+
a
x
(
1
−
x
)
(
1
−
a
x
)
]
1
(
1
−
x
)
(
1
−
a
x
)
Then,
Option
A
is correct answer.
The sum of the series
n
∑
r
=
1
(
−
1
)
r
−
1
.
n
C
r
(
a
−
r
)
is
Report Question
0%
a
0%
0
0%
n
.2
n
−
1
+
a
0%
None of these
Explanation
∑
n
r
=
1
(
−
1
)
r
−
1
n
c
r
(
a
−
r
)
P
u
t
n
=
1
⇒
n
c
1
(
a
−
1
)
−
n
c
2
(
a
−
2
)
+
n
c
3
(
a
−
1
)
+
.
.
.
.
.
.
.
(
−
1
)
n
−
1
n
c
n
(
a
−
n
)
⇒
a
[
n
c
1
−
n
c
2
+
n
c
3
−
n
c
4
+
n
c
5
+
.
.
.
.
.
.
.
−
n
c
n
]
−
n
c
1
+
2
n
c
2
−
3
n
c
3
+
4
n
c
4
.
.
.
.
.
.
.
.
.
=
a
[
n
c
1
−
n
c
2
+
n
c
3
−
n
c
4
+
n
c
5
+
.
.
.
.
.
.
]
−
[
n
c
1
−
2
n
c
2
+
3
n
c
3
+
4
n
c
4
+
.
.
.
.
.
.
.
]
(
1
−
x
)
n
=
n
c
0
−
n
c
1
x
+
n
c
2
x
2
−
n
c
3
x
3
.
.
.
.
.
.
.
[
A
c
c
o
r
d
i
n
g
t
o
t
h
i
s
f
o
r
m
u
l
a
]
⇒
A
d
d
&
s
u
b
t
r
a
c
t
n
c
0
i
n
a
h
a
v
e
e
q
u
a
t
i
o
n
&
t
a
k
i
n
g
o
u
t
c
o
m
m
o
n
(
−
1
)
a
l
s
o
.
⇒
a
[
−
(
n
c
0
−
n
c
1
+
n
c
2
−
n
c
3
+
.
.
.
.
.
.
)
+
n
c
o
]
−
[
n
c
1
−
2
n
c
2
+
3
n
c
3
−
4
n
c
4
]
P
u
t
x
=
1
(
1
−
1
)
n
=
n
c
0
−
n
c
1
+
n
c
2
−
n
c
3
=
0
S
o
,
a
[
−
0
+
n
c
0
]
−
[
n
c
1
−
2
n
c
2
+
3
n
c
3
−
4
n
c
4
+
.
.
.
.
.
.
.
.
.
]
→
(
i
)
(
1
+
n
)
n
=
n
c
0
+
n
c
1
x
+
n
c
2
x
2
+
n
c
3
x
3
+
n
c
4
x
4
+
.
.
.
.
.
.
.
[
←
f
o
r
m
u
l
a
]
D
i
f
f
.
w
.
r
.
t
.
n
,
w
e
g
e
t
n
(
1
+
x
)
n
−
1
=
n
c
1
+
2
x
n
c
2
+
3
x
n
c
3
+
4
x
n
c
4
+
.
.
.
.
P
u
t
x
=
−
1
S
o
,
x
(
1
−
x
)
n
−
1
=
n
c
1
−
2
x
n
c
2
+
3
x
2
n
c
3
+
4
n
c
4
+
.
.
.
.
.
.
.
.
.
0
=
n
c
1
−
2
n
c
2
+
3
n
c
3
−
4
n
c
4
So, put the value in equation in (1)
=
a
[
n
c
0
]
−
[
0
]
⇒
a
(
1
)
=
a
∑
n
r
=
1
(
−
1
)
r
−
1
n
c
r
(
a
−
r
)
=
a
1.3.4
+
2.5.8
+
3.6.9
+
upto
n
terms is equal to ________ .
Report Question
0%
n
(
n
+
1
)
(
n
+
2
)
6
0%
n
(
n
+
1
)
(
3
n
2
+
23
n
+
46
)
12
0%
n
(
27
n
3
+
90
n
2
+
45
n
−
5
)
4
0%
n
(
n
+
1
)
(
2
n
+
1
)
6
0%
N
o
n
e
o
f
t
h
e
s
e
The sum of the series
1
+
2.2
+
3.2
2
+
4.2
3
+
5.2
4
+
.
.
.
+
1000.2
999
is
Report Question
0%
999.2
999
−
1
0%
999.2
1000
−
1
0%
999.2
1000
+
1
0%
999.2
999
+
1
Explanation
S
=
1
+
2.2
+
3.2
2
+
4.2
3
+
5.2
4
+
.
.
.
.
.
+
1000.2
999
__ (1)
Multiply with '2' on both sides
2
S
=
1.2
+
2.2
2
+
3.2
2
+
4.2
4
+
5.2
5
+
.
.
.
+
999.2
999
+
1000.2
1000
__ (2)
subtracting equation (1) & (2)
(
S
−
2
S
)
=
[
1
+
(
2.2
−
1.2
)
+
(
3.2
2
−
2.2
2
)
+
(
4.2
3
−
3.2
3
)
+
(
5.2
4
−
4.2
4
)
+
...
+
(
1000.2
999
−
999.2
999
)
−
1000.2
1000
(
S
−
2
S
)
=
1
+
1.2
+
1.2
2
+
1.2
3
+
1.2
4
+
.
.
.
.
+
1.2
999
−
1000.2
1000
−
S
=
1
+
(
2
+
2
2
+
2
3
+
2
4
+
.
.
.
+
2
999
)
−
1000.2
1000
[
∵
a
+
a
r
+
a
r
2
+
.
.
.
+
a
r
n
−
1
=
a
.
(
r
n
−
1
)
r
−
1
]
a
=
2
,
r
=
2
,
n
=
999
−
S
=
1
+
2.
(
2
999
−
1
)
2
−
1
−
1000.2
1000
−
S
=
1
+
2
1000
−
2
−
1000.2
1000
−
S
=
−
1
+
2
1000
(
1
−
1000
)
−
S
=
−
1
−
999.2
1000
S
=
999.2
1000
+
1
n
∑
r
=
1
r
−
1
∑
p
=
0
n
C
r
⋅
r
C
p
⋅
2
p
is equal to?
Report Question
0%
4
n
−
3
n
+
1
0%
4
n
−
3
n
−
1
0%
4
n
−
3
n
+
2
0%
4
n
−
3
n
If
|
x
|
<
1
, then the sum of series
1
+
2
x
+
3
x
2
+
4
x
3
+
.
.
.
.
.
.
.
.
.
∞
will be
Report Question
0%
1
1
−
x
0%
1
1
+
x
0%
1
(
1
+
x
)
2
0%
1
(
1
−
x
)
2
Explanation
Let
S
=
1
+
2
x
+
3
x
2
+
.
.
.
.
.
.
∞
…
(
1
)
multiply by
x
on both sides
x
S
=
x
+
2
x
2
+
3
x
3
+
.
.
.
.
.
∞
…
(
2
)
Subtract
(
1
)
from
(
2
)
S
=
1
+
2
x
+
3
x
2
+
.
.
.
.
.
.
∞
x
S
=
x
+
2
x
2
+
3
x
3
+
.
.
.
.
.
∞
- - - -
--------------------------------------------------------
S
(
1
−
x
)
=
1
+
x
+
x
2
+
x
3
+
.
.
.
.
.
∞
S
(
1
−
x
)
=
1
1
−
x
[sum of infinte G.P
S
∞
=
1
1
−
r
]
S
=
1
(
1
−
x
)
2
1
2.5
+
1
5.8
+
1
8.11
+
.
.
n
terms
=
Report Question
0%
3
n
2
(
3
n
+
2
)
0%
3
n
3
n
+
2
0%
n
2
(
3
n
+
2
)
0%
n
3
n
+
2
Explanation
1
2.5
+
1
5.8
+
1
8.11
+
.
.
.
.
.
+
1
[
2
+
3
(
n
−
1
)
]
.
[
5
+
3
(
n
−
1
)
]
=
n
∑
n
=
1
1
[
2
+
3
n
−
3
]
.
[
5
+
3
n
−
3
]
=
n
∑
n
=
1
1
(
3
n
−
1
)
.
(
3
n
+
2
)
=
1
3
∑
[
3
n
+
2
−
(
3
n
−
1
)
]
(
3
n
−
1
)
(
3
n
+
2
)
=
1
3
∑
1
3
n
−
1
−
1
3
n
+
2
=
1
3
[
1
2
−
1
5
+
1
5
−
1
8
+
1
8
−
1
11
+
.
.
.
+
1
3
n
−
4
−
1
3
n
−
1
+
1
3
n
−
1
−
1
3
n
+
2
]
=
1
3
[
1
2
−
1
3
n
+
2
]
=
3
n
3
(
3
n
+
2
)
.2
=
n
2
(
3
n
+
2
)
The sum of the series
5
13
+
55
13
2
+
555
13
3
+
.
.
.
.
.
.
.
.
.
∞
is
Report Question
0%
65
36
0%
65
32
0%
25
36
0%
none of these
Explanation
S
=
5
13
+
55
13
2
+
555
13
3
+
5555
13
4
+
.
.
.
.
.
(
1
)
Now multiply by
1
13
, we get
1
13
s
=
5
13
2
+
55
13
3
+
555
13
4
+
.
.
.
.
.
(
2
)
Subtracting
(
2
)
from
(
1
)
s
−
1
13
s
[
5
13
+
55
13
2
+
555
13
3
+
.
.
.
.
.
]
−
[
5
13
2
+
55
13
3
+
.
.
…
]
12
s
13
=
5
13
+
(
55
13
2
+
5
13
2
)
+
(
555
13
3
+
55
13
3
)
+
.
.
.
.
.
12
s
13
=
5
13
+
50
13
2
+
500
13
3
+
.
.
.
.
=
5
13
1
−
10
13
12
s
13
=
5
3
⇒
s
=
65
36
.
Sum to n terms the following series :
Report Question
0%
5 + 11 + 19 + 29 + 41 + .......
0%
3 + 7 + 14 + 24 + 37 +......
0%
6 + 9 + 16 + 27 + 42 + .....
0%
5 + 7 + 13 + 31 + 85 + ....
2
n
+
1
∑
k
=
1
(
−
1
)
k
−
1
k
2
=
Report Question
0%
(
n
+
1
)
(
2
n
+
1
)
0%
(
n
+
1
)
(
2
n
−
1
)
0%
(
n
−
1
)
(
2
n
−
1
)
0%
(
n
−
1
)
(
2
n
+
1
)
Explanation
2
n
+
1
∑
k
=
1
(
−
1
)
k
−
1
k
2
=
1
2
−
2
2
+
3
2
−
4
2
+
5
2
.
.
.
.
.
.
−
(
2
n
)
2
+
(
2
n
+
1
)
2
=
1
2
+
3
2
+
5
2
+
.
.
.
.
.
+
(
2
n
+
1
)
2
−
[
2
2
+
4
2
+
.
.
.
+
(
2
n
)
2
]
=
1
2
+
2
2
+
3
2
+
.
.
.
.
.
+
(
2
n
+
1
)
2
−
2
[
2
2
+
4
2
+
.
.
.
.
(
2
n
)
2
]
Adding and subtract even terms to complete the series.
Using identify
1
2
+
2
2
+
.
.
.
.
+
n
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
The addition will become
=
1
2
+
2
2
+
3
2
+
.
.
.
.
+
(
2
n
+
1
)
−
2
(
2
2
)
[
1
2
+
2
2
+
.
.
.
.
.
+
n
2
]
=
(
2
n
+
1
)
(
2
n
+
2
)
(
4
n
+
3
)
6
−
8
n
(
n
+
1
)
(
2
n
+
1
)
6
=
2
(
2
n
+
1
)
(
n
+
1
)
(
4
n
+
3
)
6
−
8
n
(
n
+
1
)
(
2
n
+
1
)
6
=
2
6
(
n
+
1
)
(
2
n
+
1
)
[
4
n
+
3
−
4
n
]
=
1
3
(
n
+
1
)
(
2
n
+
1
)
(
3
)
=
(
n
+
1
)
(
2
n
+
1
)
If
S
=
1
+
1
1
+
2
+
1
1
+
2
+
3
+
1
1
+
2
+
3
+
4
.
.
.
.
.
.
,
then
Report Question
0%
S
n
=
2
n
n
+
1
0%
S
n
=
2
n
n
−
1
0%
S
∞
=
2
0%
S
∞
=
1
Explanation
S
n
=
1
1
+
1
1
+
2
+
1
1
+
2
+
3
+
1
1
+
2
+
3
+
4
+
.
.
.
.
.
.
T
n
=
1
1
+
2
+
3
+
.
.
.
n
=
1
n
(
n
+
1
)
2
T
n
=
2
n
(
n
+
1
)
=
2
[
(
n
+
1
)
−
n
n
(
n
+
1
)
]
=
2
[
1
n
−
1
n
+
1
]
T
1
=
2
[
1
1
−
1
2
]
T
2
=
2
[
1
2
−
1
3
]
.
.
.
.
T
n
=
2
[
1
n
−
1
n
+
1
]
Add the above terms
S
n
=
2
[
1
−
1
n
+
1
]
=
2
[
n
+
1
−
1
n
+
1
]
=
2
n
n
+
1
S
∞
=
lim
S_{\infty} = 2
.
If
S = \tan ^ { - 1 } \left( \frac { 1 } { n ^ { 2 } + n + 1 } \right) + \tan ^ { - 1 } \left( \frac { 1 } { n ^ { 2 } + 3 n + 3 } \right) + \ldots + \tan ^ { - 1 } \left( \frac { 1 } { 1 + ( n + 19 ) ( n + 20 ) } \right)
then
\tan S
is equal to
Report Question
0%
\frac { 20 } { 401 + 20 n }
0%
\frac { n } { n ^ { 2 } + 20 n + 1 }
0%
\frac { 20 } { n ^ { 2 } + 20 n + 1 }
0%
\frac { n } { 401 + 20 n }
Explanation
\begin{array}{l} S={ \tan ^{ -1 } }\left( { \frac { 1 }{ { { n^{ 2 } }+n+1 } } } \right) +{ \tan ^{ -1 } }\left( { \frac { 1 }{ { { n^{ 2 } }+3n+3 } } } \right) +....+{ \tan ^{ -1 } }\left( { \frac { 1 }{ { 1+\left( { n+19 } \right) \left( { n+20 } \right) } } } \right) \\ S={ \tan ^{ -1 } }\left( { \frac { { n+1-n } }{ { 1+n\left( { n+1 } \right) } } } \right) +{ \tan ^{ -1 } }\left[ { \frac { { \left( { n+2 } \right) -\left( { n-1 } \right) } }{ { 1+\left( { n+1 } \right) \left( { n+2 } \right) } } } \right] +.....+{ \tan ^{ -1 } }\left[ { \frac { { \left( { n+20 } \right) -\left( { n+19 } \right) } }{ { 1+\left( { n+19 } \right) \left( { n+20 } \right) } } } \right] \\ =\left[ { { { \tan }^{ -1 } }\left( { n+1 } \right) -{ { \tan }^{ -1 } }\left( n \right) } \right] +\left[ { { { \tan }^{ -1 } }\left( { n+2 } \right) -{ { \tan }^{ -1 } }\left( { n+1 } \right) } \right] +......+\left[ { { { \tan }^{ -1 } }\left( { n+20 } \right) -{ { \tan }^{ -1 } }\left( { n+19 } \right) } \right] \\ ={ \tan ^{ -1 } }\left( { n+20 } \right) -ta{ n^{ -1 } }\left( n \right) \\ ={ \tan ^{ -1 } }\left( { \frac { { 20 } }{ { 1+{ n^{ 2 } }+20n } } } \right) \\ { { tans } }=\frac { { 20 } }{ { { n^{ 2 } }+20n+1 } } \\ Hence,\, the\, option\, C\, is\, correct\, answer. \end{array}
7, 11, 23, 51, 103 ?
Report Question
0%
186
0%
188
0%
185
0%
187
0%
none of these
Explanation
7,11,23,51,103,?
7+4\times 1= 11
11+4\times 3=23
\leftarrow
difference of 2
23+4\times 7=51
\leftarrow
difference of 4
51+4\times 13= 103
\leftarrow
difference of 6
103+4\times 21= 187
\leftarrow
difference will be of 8
The value of the expression
\sum _{ r=0 }^{ n }{ { (-1) }^{ r } } \left( \dfrac { ^nC_r }{^{r+3}C_r } \right)
is
Report Question
0%
\dfrac{n(n+1)}{2}
0%
\dfrac{n+3}{3}
0%
\dfrac{3}{n+3}
0%
\dfrac{n+2}{2}
S=\tan^{-1}\left(\dfrac{1}{n^2+n+1}\right)+\tan^{-1}\left(\dfrac{1}{n^2+3n+3}\right)+.....+\tan^{-1}\left(\dfrac{1}{1+(n+19)(n+20)}\right)
, then
\tan S
is equal to?
Report Question
0%
\dfrac{20}{401+20n}
0%
\dfrac{n}{n^2+20n+1}
0%
\dfrac{20}{n^2+20n+1}
0%
\dfrac{n}{401+20n}
Explanation
S = \sum_{r=0}^{19} tan^{-1} \left ( \frac{1}{1+(n+r)(n+r+1)} \right ) = tan^{-1}\left ( \frac{(n+r+1)-(n+r)}{1+(n+r)(n+r+1)} \right )
\Rightarrow S = \sum_{r=0}^{19} \left ( tan^{-1}(n+r+1)-tan^{-1}(n+r) \right )
=tan^{-1}(n+1) - tan^{-1}(n) = tan^{-1}(n+20)-tan^{-1}(n+19)
+ tan^{-1}(n+2) - tan^{-1}(n+1)
tan^{-1}(n+20) - tan^{-1}(n+19)
\Rightarrow tan \, S = \frac{(n+20)-(n)}{1+n(n+20)} = \frac{20}{n^{2}+20n+1}
\Rightarrow (C)
13, 16, 22, 33, 51 ?
Report Question
0%
89
0%
78
0%
102
0%
69
0%
none of these
Explanation
REF.Image
13,16,22,33,51, ?
Evaluate:-
If
\sum\limits_{r - 0}^n {{{\left\{ {\frac{{^n{C_{r - 1}}}}{{^n{C_r}{ + ^n}{C_{r - 1}}}}} \right\}}^3} = \frac{{25}}{{24}}}
Report Question
0%
3
0%
6
0%
4
0%
5
655, 439, 314, 250, 223 ?
Report Question
0%
215
0%
210
0%
195
0%
190
0%
none of these
Explanation
Solution
\rightarrow
Given terms are 655,439,314,250,223,?
As
a_{1}=655
a_{2}= 439
a_{3}=314
a_{4}= 250
a_{5}= 223
a_{6}=?
So,
a_{1}-a_{2}=655- 439= 216=6^{3}
a_{3}-a_{2}= 439- 314= 125=5^{3}
a_{3}-a_{4}= -250+314= 64=4^{3}
a_{4}-a_{5}=-223+250= 27=3^{3}
So, we can observe difference b/w terms are cubes
of 6,5,4,3 so, is similar way
a_{5}-a_{6}=2^{3}
223-a_{6}= 8
a_{6} = 215
So, we find next term is 215
If the expansion of
\left( x+a \right) ^{ n }
if the sum of odd terms be P & sum of even terms be Q, prove that
Report Question
0%
{ P }^{ 2 }-{ Q }^{ 2 }=({ x }^{ 2 }-{ a }^{ 2 })^{ n }
0%
4PQ=(x+a)^{ 2n }-(x-a)^{ 2n }
0%
P^2-Q^2=(x^2+a^2)^{n}
0%
None\ of\ these
Sum of the series
S=1^{2}-2^{2}+3^{2}-4^{2}+..... -2000^{2}+2003^{2}
is
Report Question
0%
2007006
0%
1005004
0%
2000506
0%
None
Find the next term
210,209,205,196,180,?
Report Question
0%
138
0%
77
0%
155
0%
327
Explanation
T_1=210
,T_2=209,
T_3=205,
T_4=196,
T_5=180,
T_6=?
T_1-T_2=1^2\\
T_2-T_3=2^2\\
T_3-T_4=3^2\\
T_4-T_5=4^2\\
T_5-T_6=5^2\\
\implies T_6=T_5 - 5^2=180-25=155
Determine the next term
20, 24, 33, 49, 74, 110, ?
Report Question
0%
133
0%
147
0%
159
0%
163
0%
171
Explanation
20,24,33,49,74,110,...
Let the number be
x
difference
24-20=4,33-24=9,49-33=16,74-49=25,110-74=36,x-110=49
\implies24-20=2^2, 33-24= 3^2, 49-33= 4^2, \,\, 74-49= 5^2\,\, 110-74=6^2,\,\,\, x-110= 7^2
So,
110+49=159
ANSWER IS C
Find the next term of the series
1728, 2744, 4096, 5832, 8000, 10648, ?
Report Question
0%
2167
0%
13824
0%
15625
0%
9261
0%
17576
Explanation
1728,2744,4096,5832,8000,10648.....
12^3\rightarrow 1728
14^3\rightarrow 2744
16^3\rightarrow 4096
18^3\rightarrow 5832
20^3\rightarrow 8000
22^3\rightarrow 10648
24^3\rightarrow 13824
ANSWER IS B
4,6,12,30,90,315,?
Report Question
0%
945
0%
1102
0%
1260
0%
1417.5
0%
None\ of\ these
Explanation
=315\times 4
=1260.
Hence, the answer is
1260.
Find next term
462,552,650,756,870,992,?
Report Question
0%
1040
0%
1122
0%
1132
0%
105
Find the missing number from the given alternatives.
Report Question
0%
39,116
0%
52,156
0%
30,117
0%
31,116
Explanation
13\quad\quad 39\\26\quad\quad 78\\?\quad\quad ?
The pattern satisfies
x\quad\quad 3x
Therefore correct option is
52\quad\quad 156
8, 31, 122, 485, 1936, 7739, ?
Report Question
0%
30950
0%
46430
0%
34650
0%
42850
0%
38540
The sum of infinite series
\begin{vmatrix} 1 & 2 \\ 6 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 2 } & 2 \\ 2 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 4 } & 2 \\ \frac { 2 }{ 3 } & 4 \end{vmatrix}+.........
Report Question
0%
-10
0%
0
0%
10
0%
\infty
If
\dfrac{\pi}{4}-1+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{1}{13}+=0
then value of
\dfrac{1}{1\times3}+\dfrac{1}{5\times7}+\dfrac{1}{9\times11}+\dfrac{1}{13\times15}+..
is
Report Question
0%
\dfrac{\pi}{8}
0%
\dfrac{\pi}{6}
0%
\dfrac{\pi}{4}
0%
\dfrac{\pi}{34}
Let
t_{r}=\frac{r}{1+r^{2}+r^{4}}
then,
\lim_{n\rightarrow \infty }\sum_{r=1}^{n}t_{r}
equals
Report Question
0%
\frac{1}{4}
0%
1
0%
\frac{1}{2}
0%
None of these
Explanation
t_r=\dfrac{r}{1+r^2+r^4}
=\dfrac{r}{r^4+2r^2+1-r^2}
=\dfrac{r}{(r^2+1)^2-r^2}=\dfrac{r}{(r^2+1-r)(r^2+1+r)}
=\dfrac{1}{2}\dfrac{2r}{(r^2+1-r)(r^2+r+1)}
=\dfrac{1}{2}\dfrac{(r^2+r+1)-(r^2-r+1)}{(r^2-r+1)(r^2+r+1)}
=\dfrac{1}{2}\left[\dfrac{1}{r^2-r+1}-\dfrac{1}{r^2+r+1}\right]
=\dfrac{1}{2}\left[\dfrac{1}{r^2-r+1}-\dfrac{1}{(r+1)^2-(r+1)+1}\right]
\displaystyle\sum^n_{r=1}t_r=\dfrac{1}{2}\left[\dfrac{1}{1-1+1}-\dfrac{1}{(n+1)^2-(n+1)+1}\right]
=\dfrac{1}{2}\left[1-\dfrac{1}{n^2+n+1}\right]=\dfrac{1}{2}\left[\dfrac{n^2+n+1-1}{n^2+n+1}\right]
\displaystyle\sum t_n=\dfrac{1}{2}\left[\dfrac{1+\dfrac{1}{n}}{1+\dfrac{1}{n}+\dfrac{1}{n^2}}\right]
\underset{n\rightarrow \infty}{lt}\displaystyle\sum t_r=\dfrac{1}{2}\left[\dfrac{1+0}{1+0+0}\right]
=\dfrac{1}{2}
.
The sum to
n
terms of the series
\dfrac {3}{1^{2}}+\dfrac {5}{1^{2}+2^{2}}+\dfrac {7}{1^{2}+2^{2}+3^{2}}+.........
is
Report Question
0%
\dfrac {6n}{n+1}
0%
\dfrac {9n}{n+1}
0%
\dfrac {12n}{n+1}
0%
\dfrac {3n}{n+1}
Explanation
\begin{array}{l} Let \\ { T_{ r } }=\dfrac { { 2r+1 } }{ { { 1^{ 2 } }+{ 2^{ 2 } }+{ r^{ 2 } } } } \\ =\dfrac { { \left( { 2r+1 } \right) } }{ { r\left( { r+1 } \right) \left( { 2r+1 } \right) } } \\ =\dfrac { 6 }{ { r\left( { 2+1 } \right) } } \\ \sum { { T_{ r } } } =\sum { \dfrac { 6 }{ { r\left( { r+1 } \right) } } } \\ =6\sum _{ r=1 }^{ n }{ \dfrac { { \left( { r+1 } \right) -r } }{ { r\left( { r+1 } \right) } } } \\ =6\sum _{ r=1 }^{ n }{ \left[ { \dfrac { 1 }{ r } -\dfrac { 1 }{ { r+1 } } } \right] } \\ =6\left[ { \left( { 1-\dfrac { 1 }{ 2 } } \right) +\left( { \dfrac { 1 }{ 2 } -\dfrac { 1 }{ 3 } } \right) +.......+\left( { \dfrac { 1 }{ n } -\dfrac { 1 }{ { n+1 } } } \right) } \right] \\ =6\left[ { 1-\dfrac { 1 }{ { n+1 } } } \right] \\ =\dfrac { { 6n } }{ { n+1 } } \\ Hence,\, option\, A\, is\, \, the\, correct\, answer. \end{array}
499, 622, 868, 1237, 1729, 2344, ?
Report Question
0%
3205
0%
3082
0%
2959
0%
3462
0%
2876
Explanation
499, 622, 868, 1237, 1729, 2344,
______
499+1\times 123=499+123=622
622+2\times 123=622+146=868
868+3\times 123=868+369=1237
1237+4\times 123=1237+492=1729
1729+5\times 123=1729+615=2344
2344+6\times 123=2344+738=3082
.
The sum
\dfrac{1}{1+1^{2}+1^{4}}+\dfrac{2}{1+2^{2}+2^{4}}+\dfrac{3}{1+3^{2}+3^{4}}+...+\dfrac{99}{1+99^{2}+99^{4}}
lies between
Report Question
0%
0.46
and
0.47
0%
0.52
and
1.0
0%
0.48
and
0.49
0%
0.49
and
0.50
Explanation
We have,
\dfrac { 1 }{ { 1+{ 1^{ 2 } }+{ 1^{ 4 } } } } +\dfrac { 2 }{ { 1+{ 2^{ 2 } }+{ 2^{ 4 } } } } +\dfrac { 3 }{ { { 1^{ 3 } }+{ 2^{ 2 } }+{ 3^{ 4 } } } } +.........+\dfrac { { 99 } }{ { 1+{ { 99 }^{ 2 } }+{ { 99 }^{ 4 } } } } \\ =\sum _{ n=1 }^{ 99 }{ \dfrac { x }{ { 1+{ x^{ 2 } }+{ x^{ 4 } } } } } \\ =\sum _{ n=1 }^{ 99 }{ \dfrac { x }{ { { { \left( { { x^{ 2 } }+1 } \right) }^{ 2 } }-{ x^{ 2 } } } } } \\ =\sum _{ n=1 }^{ 99 }{ \dfrac { { \left( { { x^{ 2 } }+x+1 } \right) -\left( { { x^{ 2 } }-x+1 } \right) } }{ { 2\left( { { x^{ 2 } }+x+1 } \right) \left( { { x^{ 2 } }-x+1 } \right) } } } \\ =\dfrac { 1 }{ 2 } \sum _{ n=1 }^{ 99 }{ \left( { \dfrac { 1 }{ { { x^{ 2 } }-x+1 } } -\dfrac { 1 }{ { { x^{ 2 } }+x+1 } } } \right) } \\ =\dfrac { 1 }{ 2 } \left( { \dfrac { 1 }{ 1 } -\dfrac { 1 }{ 3 } +\dfrac { 1 }{ 3 } -\dfrac { 1 }{ 7 } +\dfrac { 1 }{ 7 } +.........+\dfrac { 1 }{ { { { 99 }^{ 2 } }+99+1 } } } \right) \\ =\dfrac { 1 }{ 2 } \left( { 1-\dfrac { 1 }{ { 9901 } } } \right) \\ =\dfrac { { 4950 } }{ { 9901 } } \\ \approx \dfrac { 1 }{ 2 }
\\ Hence,\, option\, D\, is\, correct\, answer.
Find :
12,15,21,24,30,33 , ? , ?
Report Question
0%
39,42
0%
37,42
0%
38,47
0%
39,51
Explanation
12,15,21,24,30,33,?,?
12
12 + 3 = 15
15+3\times 2=21
21+3=24
24+3\times 2=30
30+3=33
33+3\times 2=39
39+3=42
Find the missing number :
Report Question
0%
125
0%
90
0%
105
0%
225
Explanation
\textbf{Step 1: Observe the numbers opposite to each other}
\text{We can see that the number opposite to 315 is 21. Also, } \dfrac{315}{21}=15
\text{Hence, we can say the missing number has at least one factor of 15 }
\text{We see the missing number is opposite to 15}
\text{Also, } 15\times15=225
\textbf{Step 2: Verification}
\text{Let the missing number be x.}
\text{ATQ, }
\Rightarrow 21+15+x=261
\Rightarrow x=261-21-15
x=225
\text{Hence, it is verified that x=225}
\textbf{Thus, the missing number is D 225.}
23,29,47,75 , ?
Report Question
0%
87
0%
93
0%
110
0%
117
Explanation
2\underbrace { 3\quad ,\quad 2 } \underbrace { 9\quad ,\quad 4 } \underbrace { 7\quad ,\quad 7 } \underbrace { 5\quad ,\quad ? } \quad =75+35
6
18
28
35
\left( 2\times 3 \right) \uparrow
\left( 2\times 9 \right) \uparrow
\left( 4\times 7 \right) \uparrow
\left( 7\times 5 \right) \uparrow
=110
The value of
\dfrac{1}{6.10}+\dfrac{1}{10.14}+\dfrac{1}{14.18}+....\infty
equals to
Report Question
0%
\dfrac{1}{(24)^2}
0%
\dfrac{1}{6}
0%
\dfrac{1}{24}
0%
\dfrac{1}{(24)^3}
Explanation
S=\frac{1}{6 \cdot 10}, \frac{1}{10 \cdot 14}+\frac{1}{1419}+.....\infty
S=\frac{1}{4}\left(\frac{1}{6}-\frac{1}{10}\right)+\frac{1}{4}\left(\frac{1}{10}-\frac{1}{14}\right)+\frac{1}{4}\left(\frac{1}{14}-\frac{1}{18}\right)+.....\infty
Now take
\frac{1}{4}
common
S=\frac{1}{4}\left[\frac{1}{6}-\frac{1}{16}+\frac{1}{10}-\frac{1}{1 / 4}+\frac{1}{14}-\frac{1}{18}+1,-\infty\right]
S=\frac{1}{4} \times \frac{1}{6}=\frac{1}{24}
option
c
is correct
0:0:2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page