CBSE Questions for Class 11 Engineering Maths Sequences And Series Quiz 9 - MCQExams.com

The value of $$\sum\limits_{n = 2}^\infty  {\left( {1 - \frac{1}{{{n^2}}}} \right)} $$ equals 
  • $$-ln 3$$
  • $$0$$
  • $$-ln 2$$
  • $$-ln 5$$
solve that :- 
1179763_5300b9e093224c43a86f8c6d71177d45.png
  • $$14$$
  • $$18$$
  • $$11$$
  • $$26$$
The numbers $${\log _{180}}12,{\log _{2160}}12,{\log _{25920}}12$$ are in
  • AP
  • GP
  • HP
  • None of these
If $$[x]$$ denotes the greates integer $$\le x$$, then $$\left[\dfrac{2}{3} \right] + \left[\dfrac{2}{3} + \dfrac{1}{99} \right] + \left[\dfrac{2}{3} + \dfrac{2}{99} \right] + .... + \left[\dfrac{2}{3} + \dfrac{98}{99} \right] =$$
  • $$99$$
  • $$98$$
  • $$66$$
  • $$65$$
If $$(1+ax)^{n }=1+8x+24x^{2}+...;$$ then $$\cfrac {a-n}{a+n}$$ is equal to
  • $$3$$
  • $$\dfrac {-1}{3}$$
  • $$-3$$
  • $$\dfrac {1}{3}$$
If $$S={1}^{2}-{2}^{2}+{3}^{2}-{4}^{2}....$$ upto $$n$$ terms and $$n$$ is even, then $$S$$ equals _____
  • $$\cfrac{n(n+1)}{2}$$
  • $$\cfrac{n(n-1)}{2}$$
  • $$\cfrac{-n(n+1)}{2}$$
  • $$\cfrac{-n(n-1)}{2}$$
The sum $$\sum _{ i=0 }^{ m }{ \left( \begin{matrix} 10 \\ i \end{matrix} \right) \left( \begin{matrix} 20 \\ m-i \end{matrix} \right)  }$$ (where $$\left( \begin{matrix} p \\ q \end{matrix} \right)=0$$ if $$p<q$$) is maximum where $$m$$ is
  • $$5$$
  • $$10$$
  • $$15$$
  • $$20$$
The series $${1}^{2}-{2}^{2}+{3}^{2}-{4}^{2}+.....+{99}^{2}-{100}^{2}=$$ _____
  • $$-5050$$
  • $$5050$$
  • $$11000$$
  • $$-11000$$
If $$x$$ and $$y$$ are the number of possibilities that $$A$$ can assume such that the unit digit of A and $$A^3$$ are same and the unit digit of $$A^2$$ and $$A^3$$ are same respectively ,then the value of $$x-y$$ is (where $$A$$ is a single digit number)
  • $$4$$
  • $$2$$
  • $$3$$
  • $$5$$
$$\begin{bmatrix} 12 & 47 & 21 \\ 10 & 52 & 4 \\ 64 & ? & 24 \end{bmatrix}$$ 
  • $$40$$
  • $$83$$
  • $$62$$
  • $$16$$
In a triangle $$ABC$$, 
$$acos^2(\frac{C}{2})+c\;cos^2(\frac{A}{2})=\dfrac{3b}{2}$$, then the sides $$a,b,c$$ 
  • Satisfy $$a+b=c$$
  • are in $$A.P.$$
  • are in $$G.P.$$
  • are in $$H.P.$$
The value of $$\displaystyle \sum^{n-1}_{r=1}\sin^{2}\dfrac {r \pi}{n}$$ is equal to
  • $$n$$
  • $$\dfrac {n}{2}$$
  • $$n+1$$
  • $$Zero$$
The sum of the series $$10.^{n}C_{0}+10^{2}.^{n}C_{1}+10^{3}.^{n}C_{2}+...10^{n+1}.^{n}C_{n}$$ is 
  • $$11^{n}$$
  • $$10.11^{n}$$
  • $$11^{n+1}$$
  • $$11^{n}-1$$
$$1 + \left( {1 + a} \right)x + 1\left( {1 + a + {a^2}} \right){x^2} + \left( {1 + a + {a^2} + {a^3}} \right){x^3} +  -  -  -  -  - \;{\text{where}}\;0 < a,x < 1,\;{\text{is}} - $$
  • $$\frac{1}{{\left( {1 - x} \right)\left( {1 - a} \right)}}$$
  • $$\frac{1}{{\left( {1 - x} \right)\left( {1 - ax} \right)}}$$
  • $$\frac{1}{{\left( {1 - a} \right)\left( {1 - ax} \right)}}$$
  • None of these
The sum of the series $$\displaystyle \sum_{r = 1}^{n} (-1)^{r - 1}.^{n}C_{r} (a - r)$$ is
  • $$a$$
  • $$0$$
  • $$n.2^{n - 1} + a$$
  • None of these
$$1.3.4+2.5.8+3.6.9+$$ upto $$n$$ terms is equal to ________ .
  • $$\dfrac {n(n+1)(n+2)}{6}$$
  • $$\dfrac {n(n+1)(3n^{2}+23n+46)}{12}$$
  • $$\dfrac {n(27n^{3}+90n^{2}+45n-5)}{4}$$
  • $$\dfrac {n(n+1)(2n+1)}{6}$$
  • $$None\ of\ these$$
The sum of the series  
$$1+2.2+3.2^{2}+4.2^{3}+5.2^{4}+...+1000.2^{999}$$ is
  • $$999.2^{999}-1$$
  • $$999.2^{1000}-1$$
  • $$999.2^{1000}+1$$
  • $$999.2^{999}+1$$
$$\displaystyle\sum^n_{r=1}\displaystyle\sum^{r-1}_{p=0}$$ $$^{n}C_r\cdot {^{r}C_p}\cdot 2^p$$ is equal to?
  • $$4^n-3^n+1$$
  • $$4^n-3^n-1$$
  • $$4^n-3^n+2$$
  • $$4^n-3^n$$
If $$| x| < 1$$ , then the sum of series $$ 1+ 2x + 3x^2 + 4x^3 + .........\infty$$ will be
  • $$\dfrac{1}{1-x}$$
  • $$\dfrac{1}{1+x}$$
  • $$\dfrac{1}{(1+x)^2}$$
  • $$\dfrac{1}{(1-x)^2}$$
$$\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+..n$$ terms $$=$$
  • $$\dfrac{3n}{2(3n+2)}$$
  • $$\dfrac{3n}{3n+2}$$
  • $$\dfrac{n}{2(3n+2)}$$
  • $$\dfrac{n}{3n+2}$$
The sum of the series $${5 \over {13}} + {{55} \over {{{13}^2}}} + {{555} \over {{{13}^3}}} + .........\infty $$ is 
  • $${65\over {36}}$$
  • $${65\over {32}}$$
  • $${25\over {36}}$$
  • none of these
Sum to n terms the following series :
  • 5 + 11 + 19 + 29 + 41 + .......
  • 3 + 7 + 14 + 24 + 37 +......
  • 6 + 9 + 16 + 27 + 42 + .....
  • 5 + 7 + 13 + 31 + 85 + ....
$$\sum _{ k=1 }^{ 2n+1 }{ (-1)^{k-1} }k^2=$$ 
  • $$(n+1)(2n+1)$$
  • $$(n+1)(2n-1)$$
  • $$(n-1)(2n-1)$$
  • $$(n-1)(2n+1)$$
If $$S = 1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + \frac{1}{{1 + 2 + 3 + 4}}......,$$ then
  • $${S_n} = \frac{{2n}}{{n + 1}}$$
  • $${S_n} = \frac{{2n}}{{n - 1}}$$
  • $${S_\infty } = 2$$
  • $${S_\infty } = 1$$
If $$S = \tan ^ { - 1 } \left( \frac { 1 } { n ^ { 2 } + n + 1 } \right) + \tan ^ { - 1 } \left( \frac { 1 } { n ^ { 2 } + 3 n + 3 } \right) + \ldots + \tan ^ { - 1 } \left( \frac { 1 } { 1 + ( n + 19 ) ( n + 20 ) } \right)$$ then $$\tan S$$ is equal to
  • $$\frac { 20 } { 401 + 20 n }$$
  • $$\frac { n } { n ^ { 2 } + 20 n + 1 }$$
  • $$\frac { 20 } { n ^ { 2 } + 20 n + 1 }$$
  • $$\frac { n } { 401 + 20 n }$$
7, 11, 23, 51, 103 ?
  • 186
  • 188
  • 185
  • 187
  • none of these
The value of the expression $$\sum _{ r=0 }^{ n }{ { (-1) }^{ r } } \left( \dfrac { ^nC_r  }{^{r+3}C_r  }  \right) $$ is
  • $$\dfrac{n(n+1)}{2}$$
  • $$\dfrac{n+3}{3}$$
  • $$\dfrac{3}{n+3}$$
  • $$\dfrac{n+2}{2}$$
$$S=\tan^{-1}\left(\dfrac{1}{n^2+n+1}\right)+\tan^{-1}\left(\dfrac{1}{n^2+3n+3}\right)+.....+\tan^{-1}\left(\dfrac{1}{1+(n+19)(n+20)}\right)$$, then $$\tan S$$ is equal to?
  • $$\dfrac{20}{401+20n}$$
  • $$\dfrac{n}{n^2+20n+1}$$
  • $$\dfrac{20}{n^2+20n+1}$$
  • $$\dfrac{n}{401+20n}$$
13, 16, 22, 33, 51 ?
  • 89
  • 78
  • 102
  • 69
  • none of these
Evaluate:-
If $$\sum\limits_{r - 0}^n {{{\left\{ {\frac{{^n{C_{r - 1}}}}{{^n{C_r}{ + ^n}{C_{r - 1}}}}} \right\}}^3} = \frac{{25}}{{24}}} $$
  • $$3$$
  • $$6$$
  • $$4$$
  • $$5$$
655, 439, 314, 250, 223 ?
  • 215
  • 210
  • 195
  • 190
  • none of these
If the expansion of $$\left( x+a \right) ^{ n }$$ if the sum of odd terms be P & sum of even terms be Q, prove that
  • $${ P }^{ 2 }-{ Q }^{ 2 }=({ x }^{ 2 }-{ a }^{ 2 })^{ n }$$
  • $$4PQ=(x+a)^{ 2n }-(x-a)^{ 2n }$$
  • $$P^2-Q^2=(x^2+a^2)^{n}$$
  • $$None\ of\ these$$
Sum of the series
$$S=1^{2}-2^{2}+3^{2}-4^{2}+..... -2000^{2}+2003^{2}$$ is
  • $$2007006$$
  • $$1005004$$
  • $$2000506$$
  • $$None$$
Find the next term
$$210,209,205,196,180,?$$
  • $$138$$
  • $$77$$
  • $$155$$
  • $$327$$
Determine the next term $$20, 24, 33, 49, 74, 110, ?$$
  • $$133$$
  • $$147$$
  • $$159$$
  • $$163$$
  • $$171$$
Find the next term of the series $$1728, 2744, 4096, 5832, 8000, 10648, ?$$
  • $$2167$$
  • $$13824$$
  • $$15625$$
  • $$9261$$
  • $$17576$$
$$4,6,12,30,90,315,?$$
  • $$945$$
  • $$1102$$
  • $$1260$$
  • $$1417.5$$
  • $$None\ of\ these$$
Find next term
$$462,552,650,756,870,992,?$$
  • $$1040$$
  • $$1122$$
  • $$1132$$
  • $$105$$
Find the missing number from the given alternatives.
1270336_822c03df2be64fbfb6d26b105230fb9f.png
  • $$39,116$$
  • $$52,156$$
  • $$30,117$$
  • $$31,116$$
$$8, 31, 122, 485, 1936, 7739, ?$$
  • $$30950$$
  • $$46430$$
  • $$34650$$
  • $$42850$$
  • $$38540$$
The sum of infinite series $$\begin{vmatrix} 1 & 2 \\ 6 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 2 }  & 2 \\ 2 & 4 \end{vmatrix}+\begin{vmatrix} \frac { 1 }{ 4 }  & 2 \\ \frac { 2 }{ 3 }  & 4 \end{vmatrix}+.........$$
  • $$-10$$
  • $$0$$
  • $$10$$
  • $$\infty$$
If $$\dfrac{\pi}{4}-1+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{11}-\dfrac{1}{13}+=0$$ then value of $$\dfrac{1}{1\times3}+\dfrac{1}{5\times7}+\dfrac{1}{9\times11}+\dfrac{1}{13\times15}+..$$ is
  • $$\dfrac{\pi}{8}$$
  • $$\dfrac{\pi}{6}$$
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{34}$$
Let $$t_{r}=\frac{r}{1+r^{2}+r^{4}}$$ then, $$\lim_{n\rightarrow \infty }\sum_{r=1}^{n}t_{r}$$ equals
  • $$\frac{1}{4}$$
  • 1
  • $$\frac{1}{2}$$
  • None of these
The sum to $$n$$ terms of the series 
$$\dfrac {3}{1^{2}}+\dfrac {5}{1^{2}+2^{2}}+\dfrac {7}{1^{2}+2^{2}+3^{2}}+.........$$ is 
  • $$\dfrac {6n}{n+1}$$
  • $$\dfrac {9n}{n+1}$$
  • $$\dfrac {12n}{n+1}$$
  • $$\dfrac {3n}{n+1}$$
$$499, 622, 868, 1237, 1729, 2344, ?$$
  • $$3205$$
  • $$3082$$
  • $$2959$$
  • $$3462$$
  • $$2876$$
The sum $$\dfrac{1}{1+1^{2}+1^{4}}+\dfrac{2}{1+2^{2}+2^{4}}+\dfrac{3}{1+3^{2}+3^{4}}+...+\dfrac{99}{1+99^{2}+99^{4}}$$ lies between

  • $$0.46$$ and $$0.47$$
  • $$0.52$$ and $$1.0$$
  • $$0.48$$ and $$0.49$$
  • $$0.49$$ and $$0.50$$
Find : $$12,15,21,24,30,33 , ? , ?$$
  • $$39,42$$
  • $$37,42$$
  • $$38,47$$
  • $$39,51$$
Find the missing number :

1306229_30e87c7078374916b3c099fafe3684b1.png
  • $$125$$
  • $$90$$
  • $$105$$
  • $$225$$
$$23,29,47,75 , ?$$
  • $$87$$
  • $$93$$
  • $$110$$
  • $$117$$
The value of $$\dfrac{1}{6.10}+\dfrac{1}{10.14}+\dfrac{1}{14.18}+....\infty$$ equals to
  • $$\dfrac{1}{(24)^2}$$
  • $$\dfrac{1}{6}$$
  • $$\dfrac{1}{24}$$
  • $$\dfrac{1}{(24)^3}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers