CBSE Questions for Class 11 Engineering Maths Sets Quiz 10 - MCQExams.com

If n(U) = 50, n(A) = 20, $$n((A \cup B)')$$  = 18 then n(B - A) is
  • $$14$$
  • $$12$$
  • $$16$$
  • $$20$$
 Let $$N$$ be the set of non-negative integers, $$I$$ the set of integers,$$N_p$$ the set of non-positive integers, $$E$$ the set of even integers and $$P$$ the set of prime numbers. Then
  • $$I-N=N_p$$
  • $$N \cap {N_p} = \phi $$
  • $$E \cap P = \phi $$
  • $$N\Delta {N_p} = 1 - \{ 0\} $$
The number of elements in the set $$\left\{ \left( a,b \right) /2{ a }^{ 2 }+3{ b }^{ 2 }=35,a,b\in z \right\} $$ when $$z$$ is the set of all integers is
  • $$2$$
  • $$4$$
  • $$8$$
  • $$12$$
The set which begins with additive identity is 
  • W
  • N
  • Q
  • Z
If $$A$$ and $$B$$ are events such that
$$P(A\cup B)=\cfrac{3}{4},P(A\cap B)=\cfrac{1}{4},P(\overline { A } )=\cfrac{2}{3}$$, then $$P(\overline { A } \cap B)$$ is
  • $$\cfrac{5}{12}$$
  • $$\cfrac{3}{8}$$
  • $$\cfrac{5}{8}$$
  • $$\cfrac{1}{4}$$
If $$A=\{4^n-3n-1:n\in N\}$$ and $$B=\{9(n-1): n\in N\}$$, then?
  • $$B\subset A$$
  • $$A\cup B = N$$
  • $$A\subset B$$
  • None of these
$$A \cup B= A \cap B$$ if : 
  • $$A\supset B$$
  • $$A=B$$
  • $$A\subset B$$
  • $$A \subseteq B$$
If $$A\ and\ B$$ are any two sets, then 
(i) $$ A\subset A\cup B$$
(ii) $$ A\cup A\subset B$$
both relation is ?
  • True
  • False
Let $$A=\left\{ 1,2,3,4 \right\} ,B=\left\{ 2,4,6 \right\} $$. Then the number of sets $$C$$ such that $$A\cap B\subseteq C\subseteq A\cup B$$ is
  • $$6$$
  • $$9$$
  • $$8$$
  • $$10$$
The set $$ \left( A\cup B\cup C \right) \cap \left( A\cap B'\cap C' \right) '\cap C'$$ is equal to 
  • $$ B\cap C'$$
  • $$ A\cap C'$$
  • $$ B\cap C$$
  • $$A\cap B\cap C'$$
$$A - ( A - B ) $$ is equivalent to which expression
  • $$B$$
  • $$A \cup B$$
  • $$A \cap B$$
  • $$B-A$$
If set 's' contains all the real values of x for which $$log_ {(2x+3)^{x^2}}<1$$ is true, then set 'S' contain:
  • $$(log_25,log_2 7)$$
  • $$[log_34,log_3 8]$$
  • $$\left(\dfrac{-3}{2},1\right)$$
  • $$(-1,0)$$
In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.
  • 10
  • 11
  • 12
  • 13
The number of subsets $$ R$$ of $$P=(1,2,3,....,9)$$ which satisfies the property "There exit integers a<b<c with a$$\in $$R, b$$\in $$R,c$$\in $$R" is
  • $$512$$
  • $$466$$
  • $$467$$
  • None of these
In a universal set x,$$n\left( x \right) = 50$$ ,$$n\left( A \right) = 35$$ , $$n\left( B \right) = 20$$ , $$n\left( {A' \cap B'} \right) = 5$$ ,then $$n\left( {A \cup B} \right),n\left( {A \cap B} \right)$$ are repsectively 
  • $$45,10$$
  • $$10,45$$
  • $$25,30$$
  • $$15,25$$
If  $$A$$  and  $$B$$  are two non empty sets then  $$( A \cup B ) ^ { C } = ?$$
  • $$A ^ { C } \cup B ^ { C }$$
  • $$A ^ { C } \cap B ^ { C }$$
  • $$A \cup B ^ { C }$$
  • $$A ^ { C } \cap B$$
Let $$S={1,2,3,.....10}$$ and $$P={1,2,3,4,5}$$ The number of subsets $$'Q'$$ of $$S$$ such that $$p \cup Q=S$$, are.....
  • $$128$$
  • $$256$$
  • $$32$$
  • $$64$$
Let  $$Q$$  be a non empty subset of  $$N$$  and  $$q$$  is a statement as given below :
$$q:$$  There exists an even number  $$a \in Q$$  Negation of the statement  $$q$$  will be :
  • There is no even number in the set $$Q$$
  • Every $$a \in Q$$ is an odd number.
  • $$(a)$$ and $$(b)$$ both
  • None of these
If the number of $$5$$ elements subsets of the set $$A\left\{\ a_{1},a_{2}.....a_{20}\right\}$$ of $$20$$ distinct elements is $$k$$ times the number of $$5$$ elements subsets containing $$a_{4}$$, then $$k$$ is 
  • $$5$$
  • $$\dfrac{20}{7}$$
  • $$4$$
  • $$\dfrac{10}{3}$$
In a battle $$70$$% of the combatants lost one eye, $$80$$% an ear, $$75$$% an arm, $$85$$% a leg, $$x$$% lost all the four limbs the minimum value of $$x$$ is
  • $$10$$
  • $$12$$
  • $$15$$
  • $$5$$
The value of set $$(A\cup B\cup C)\cap(A\cap B^1\cap C^1)^1\cap C^1$$ is equal to  
  • $$B\cap C^1$$
  • $$A\cap C$$
  • $$B\cap C^1$$
  • $$A\cap C^1$$
Two sets A and B are defined as follows
$$A=\left\{ \left( x,y \right) :y={ e }^{ 2x },x\in R \right\} $$ and 
$$B=\left\{ \left( x,y \right) :y={ x }^{ 2 },x\in R \right\} $$, then
  • $$A\subset B$$
  • $$B\subset A$$
  • $$A\bigcup B$$
  • $$A\cap B=\phi $$
If two sets $$P$$ and $$Q,n\left(P\right)=5,n\left(Q\right)=4$$ then $$n\left(P\times Q\right)=$$
  • $$20$$
  • $$9$$
  • $$25$$
  • $$5/4$$
If A= {1, 2, 5} and B= {3, 4, 5, 9}, then $$A \bigcup B$$ is equal to :
  • $$\{1, 2, 5, 9\}$$
  • $$\{1, 2, 3, 4, 9\}$$
  • $$\{1, 2, 3, 4, 5, 9\}$$
  • None of these
If P(S) denotes the set of all subsets of a given set S, then the number of one to one function from the set s={1,2,3} to the set of P(S) is 
  • 336

  • 8
  • 36
  • 320
Consider following expressions
P = $$\prod_{\theta = 1}^{100}cos\theta$$; Q = $$\prod_{\phi = 1}^{10}cos\phi$$ ; R = log cosec 0.8 $$\pi$$
Then number of non-positive elements in the set {P, Q, R} is
  • 0
  • 1
  • 2
  • 3
If $$A=\left\{1,2,3,4\right\}; B=\left\{2,4,6,8\right\}; C=\left\{3,4,5,8\right\}$$ then $$A\cap B\cap C=$$
  • $$\phi$$
  • $${4}$$
  • $$\mu$$
  • $${2,4}$$
If n(A)=3, n(B)=4, then $$n(A\times B\times C)=36 find \,n(C)$$ is equal to :
  • 3
  • 12
  • 108
  • none of these
The function $$f(x)$$ satisfies the condition $$(x-2)f(x)+2f\left(\dfrac{1}{x}\right)=2$$ for all $$x\neq 0$$. Then the value of $$f(2)$$ is 
  • $$\dfrac{1}{2}$$
  • $$1$$
  • $$\dfrac{7}{4}$$
  • $$\dfrac{-3}{2}$$
Let A,B are two sets such that n(A)=4 and n(B)=Then the least possible number of elements in the power set of $$(A\cup B)$$ is 
  • 16
  • 64
  • 256
  • 1024
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers