Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 11 Engineering Maths Sets Quiz 10 - MCQExams.com

If n(U) = 50, n(A) = 20, n((AB))  = 18 then n(B - A) is
  • 14
  • 12
  • 16
  • 20
 Let N be the set of non-negative integers, I the set of integers,Np the set of non-positive integers, E the set of even integers and P the set of prime numbers. Then
  • IN=Np
  • NNp=ϕ
  • EP=ϕ
  • NΔNp=1{0}
The number of elements in the set {(a,b)/2a2+3b2=35,a,bz} when z is the set of all integers is
  • 2
  • 4
  • 8
  • 12
The set which begins with additive identity is 
  • W
  • N
  • Q
  • Z
If A and B are events such that
P(AB)=34,P(AB)=14,P(¯A)=23, then P(¯AB) is
  • 512
  • 38
  • 58
  • 14
If A={4n3n1:nN} and B={9(n1):nN}, then?
  • BA
  • AB=N
  • AB
  • None of these
AB=AB if : 
  • AB
  • A=B
  • AB
  • AB
If A and B are any two sets, then 
(i) AAB
(ii) AAB
both relation is ?
  • True
  • False
Let A={1,2,3,4},B={2,4,6}. Then the number of sets C such that ABCAB is
  • 6
  • 9
  • 8
  • 10
The set (ABC)(ABC)C is equal to 
  • BC
  • AC
  • BC
  • ABC
A(AB) is equivalent to which expression
  • B
  • AB
  • AB
  • BA
If set 's' contains all the real values of x for which log(2x+3)x2<1 is true, then set 'S' contain:
  • (log25,log27)
  • [log34,log38]
  • (32,1)
  • (1,0)
In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.
  • 10
  • 11
  • 12
  • 13
The number of subsets R of P=(1,2,3,....,9) which satisfies the property "There exit integers a<b<c with a\in R, b\in R,c\in R" is
  • 512
  • 466
  • 467
  • None of these
In a universal set x,n\left( x \right) = 50 ,n\left( A \right) = 35 , n\left( B \right) = 20 , n\left( {A' \cap B'} \right) = 5 ,then n\left( {A \cup B} \right),n\left( {A \cap B} \right) are repsectively 
  • 45,10
  • 10,45
  • 25,30
  • 15,25
If  A  and  B  are two non empty sets then  ( A \cup B ) ^ { C } = ?
  • A ^ { C } \cup B ^ { C }
  • A ^ { C } \cap B ^ { C }
  • A \cup B ^ { C }
  • A ^ { C } \cap B
Let S={1,2,3,.....10} and P={1,2,3,4,5} The number of subsets 'Q' of S such that p \cup Q=S, are.....
  • 128
  • 256
  • 32
  • 64
Let  Q  be a non empty subset of  N  and  q  is a statement as given below :
q:  There exists an even number  a \in Q  Negation of the statement  q  will be :
  • There is no even number in the set Q
  • Every a \in Q is an odd number.
  • (a) and (b) both
  • None of these
If the number of 5 elements subsets of the set A\left\{\ a_{1},a_{2}.....a_{20}\right\} of 20 distinct elements is k times the number of 5 elements subsets containing a_{4}, then k is 
  • 5
  • \dfrac{20}{7}
  • 4
  • \dfrac{10}{3}
In a battle 70% of the combatants lost one eye, 80% an ear, 75% an arm, 85% a leg, x% lost all the four limbs the minimum value of x is
  • 10
  • 12
  • 15
  • 5
The value of set (A\cup B\cup C)\cap(A\cap B^1\cap C^1)^1\cap C^1 is equal to  
  • B\cap C^1
  • A\cap C
  • B\cap C^1
  • A\cap C^1
Two sets A and B are defined as follows
A=\left\{ \left( x,y \right) :y={ e }^{ 2x },x\in R \right\}  and 
B=\left\{ \left( x,y \right) :y={ x }^{ 2 },x\in R \right\} , then
  • A\subset B
  • B\subset A
  • A\bigcup B
  • A\cap B=\phi
If two sets P and Q,n\left(P\right)=5,n\left(Q\right)=4 then n\left(P\times Q\right)=
  • 20
  • 9
  • 25
  • 5/4
If A= {1, 2, 5} and B= {3, 4, 5, 9}, then A \bigcup B is equal to :
  • \{1, 2, 5, 9\}
  • \{1, 2, 3, 4, 9\}
  • \{1, 2, 3, 4, 5, 9\}
  • None of these
If P(S) denotes the set of all subsets of a given set S, then the number of one to one function from the set s={1,2,3} to the set of P(S) is 
  • 336

  • 8
  • 36
  • 320
Consider following expressions
P = \prod_{\theta = 1}^{100}cos\theta; Q = \prod_{\phi = 1}^{10}cos\phi ; R = log cosec 0.8 \pi
Then number of non-positive elements in the set {P, Q, R} is
  • 0
  • 1
  • 2
  • 3
If A=\left\{1,2,3,4\right\}; B=\left\{2,4,6,8\right\}; C=\left\{3,4,5,8\right\} then A\cap B\cap C=
  • \phi
  • {4}
  • \mu
  • {2,4}
If n(A)=3, n(B)=4, then n(A\times B\times C)=36 find \,n(C) is equal to :
  • 3
  • 12
  • 108
  • none of these
The function f(x) satisfies the condition (x-2)f(x)+2f\left(\dfrac{1}{x}\right)=2 for all x\neq 0. Then the value of f(2) is 
  • \dfrac{1}{2}
  • 1
  • \dfrac{7}{4}
  • \dfrac{-3}{2}
Let A,B are two sets such that n(A)=4 and n(B)=Then the least possible number of elements in the power set of (A\cup B) is 
  • 16
  • 64
  • 256
  • 1024
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers