Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Sets Quiz 10 - MCQExams.com
CBSE
Class 11 Engineering Maths
Sets
Quiz 10
If n(U) = 50, n(A) = 20,
n
(
(
A
∪
B
)
′
)
= 18 then n(B - A) is
Report Question
0%
14
0%
12
0%
16
0%
20
Explanation
n
(
U
)
=
50
,
n
(
A
)
=
20
n
(
A
∪
B
)
=
18
n
(
B
−
A
)
=
?
So,
n
(
A
∪
B
)
=
n
(
0
)
−
n
(
A
∪
B
)
So.
n
(
A
∪
B
)
=
32
n
(
B
−
A
)
=
n
(
A
∪
B
)
−
n
(
A
)
=
32
−
20
n
(
B
−
A
)
=
12
Let
N
be the set of non-negative integers,
I
the set of integers,
N
p
the set of non-positive integers,
E
the set of even integers and
P
the set of prime numbers. Then
Report Question
0%
I
−
N
=
N
p
0%
N
∩
N
p
=
ϕ
0%
E
∩
P
=
ϕ
0%
N
Δ
N
p
=
1
−
{
0
}
Explanation
By option verification,
I
−
N
=
N
p
I
is the set of integers,
⟹
N
∪
N
p
N
is set of non-negative integers,
N
p
is non-positive integers.
So
I
−
N
=
N
∪
N
p
−
N
=
N
p
The number of elements in the set
{
(
a
,
b
)
/
2
a
2
+
3
b
2
=
35
,
a
,
b
∈
z
}
when
z
is the set of all integers is
Report Question
0%
2
0%
4
0%
8
0%
12
Explanation
Let
2
x
+
3
y
=
35
,
x
,
y
>
0
Integral solution
⇒
(
a
2
=
x
,
y
2
=
b
2
)
∴
(
a
2
,
b
2
)
=
(
4
,
a
)
and
(
16
,
1
)
∴
(
a
,
b
)
≅
(
2
,
3
)
,
(
−
2
,
−
3
)
,
(
2
,
−
3
)
,
(
−
2
,
3
)
,
(
4
,
1
)
,
(
−
4
,
−
1
)
,
(
−
4
,
1
)
,
(
4
,
−
1
)
∴
8
elements
⇒
(
C
)
The set which begins with additive identity is
Report Question
0%
W
0%
N
0%
Q
0%
Z
Explanation
Additive identity is
0
.
The set that begins with additive identity is whole numbers which us denoted by
W
.
If
A
and
B
are events such that
P
(
A
∪
B
)
=
3
4
,
P
(
A
∩
B
)
=
1
4
,
P
(
¯
A
)
=
2
3
, then
P
(
¯
A
∩
B
)
is
Report Question
0%
5
12
0%
3
8
0%
5
8
0%
1
4
Explanation
Given,
P
(
A
∪
B
)
=
3
4
,
P
(
A
∩
B
)
=
1
4
,
P
(
ˉ
A
)
=
2
3
We need to find
P
(
ˉ
A
∩
B
)
.
Therefore,
P
(
B
)
=
2
3
We know
P
(
B
)
=
P
(
A
∪
B
)
+
P
(
A
∩
B
)
−
P
(
A
)
Therefore,
P
(
ˉ
A
∩
B
)
=
2
3
−
1
4
=
5
12
If
A
=
{
4
n
−
3
n
−
1
:
n
∈
N
}
and
B
=
{
9
(
n
−
1
)
:
n
∈
N
}
, then?
Report Question
0%
B
⊂
A
0%
A
∪
B
=
N
0%
A
⊂
B
0%
None of these
Explanation
4
n
−
3
n
−
1
,
n
∈
N
(
3
+
1
)
n
−
3
n
−
1
b
y
u
sin
g
b
i
n
o
m
a
l
e
n
s
i
o
n
⇒
[
1
+
3
n
+
n
C
2
⋅
3
2
+
n
C
3
⋅
3
3
+
.
.
.
.
.
.
n
C
n
⋅
3
n
]
−
3
n
−
1
⇒
1
+
3
n
+
9
n
C
2
+
27
n
C
3
+
.
.
.
.3
n
−
3
n
−
1
⇒
9
(
n
C
2
+
3
n
C
3
+
.
.
.
.
.
n
C
n
3
(
n
−
2
)
)
W
h
i
c
h
i
s
d
i
v
i
s
i
b
l
e
b
y
(
q
)
,
A
l
l
e
l
e
m
e
n
t
o
f
(
B
)
i
s
i
n
c
l
u
d
i
n
g
i
n
(
A
)
B
⊂
A
A
∪
B
=
A
∩
B
if :
Report Question
0%
A
⊃
B
0%
A
=
B
0%
A
⊂
B
0%
A
⊆
B
Explanation
⇒
A
∪
B
=
A
∩
B
⇒
A
=
B
If
A
a
n
d
B
are any two sets, then
(i)
A
⊂
A
∪
B
(ii)
A
∪
A
⊂
B
both relation is ?
Report Question
0%
True
0%
False
Let
A
=
{
1
,
2
,
3
,
4
}
,
B
=
{
2
,
4
,
6
}
. Then the number of sets
C
such that
A
∩
B
⊆
C
⊆
A
∪
B
is
Report Question
0%
6
0%
9
0%
8
0%
10
Explanation
A
=
{
1
,
2
,
3
,
4
}
,
B
=
{
2
,
4
,
6
}
A
∩
B
=
{
2
,
4
}
A
∪
B
=
{
1
,
2
,
3
,
4
,
6
}
A
∩
B
⊆
C
⊆
A
∪
B
⇒
C
=
{
2
,
4
,
D
}
where
D
is subsets of
{
1
,
3
,
6
}
⇒
No.of sets
C
= no.of subsets of
{
1
,
3
,
6
}
=
8
The set
(
A
∪
B
∪
C
)
∩
(
A
∩
B
′
∩
C
′
)
′
∩
C
′
is equal to
Report Question
0%
B
∩
C
′
0%
A
∩
C
′
0%
B
∩
C
0%
A
∩
B
∩
C
′
Explanation
(
A
∪
B
∪
C
)
⋂
(
A
⋂
B
′
∩
C
′
)
,
′
∩
C
′
(
A
∪
B
∪
C
)
∩
(
A
′
∪
B
∪
C
)
∩
C
′
[
(
A
∩
A
′
)
ϕ
∪
(
A
∩
B
)
∪
(
A
∩
C
)
∪
(
B
∩
A
′
)
ϕ
∪
(
B
∩
B
)
ϕ
∪
(
B
∩
C
)
∩
C
′
]
[
(
A
∩
B
)
∪
(
A
∩
C
)
∪
(
B
∩
C
)
]
∩
C
′
(
A
∩
B
∩
C
′
)
∪
(
A
∩
C
∩
C
′
ϕ
)
∪
(
B
∩
C
∩
C
′
ϕ
)
(
A
∩
B
∩
C
′
)
∪
(
A
∩
ϕ
)
∪
(
B
∩
ϕ
)
(
A
∩
B
∩
C
′
)
∪
ϕ
∪
ϕ
=
A
∩
B
∩
C
′
A
−
(
A
−
B
)
is equivalent to which expression
Report Question
0%
B
0%
A
∪
B
0%
A
∩
B
0%
B
−
A
Explanation
A
−
(
A
−
B
)
=
A
−
(
A
∩
B
C
)
=
A
∩
(
A
∩
B
C
)
c
=
A
∩
[
A
c
∪
(
B
c
)
c
]
=
A
∩
[
A
c
∪
B
]
since
(
B
c
)
c
=
B
=
(
A
∩
A
c
)
∪
(
A
∩
B
)
=
ϕ
∪
(
A
∩
B
)
since
A
∩
A
c
=
ϕ
=
A
∩
B
If set 's' contains all the real values of x for which
l
o
g
(
2
x
+
3
)
x
2
<
1
is true, then set 'S' contain:
Report Question
0%
(
l
o
g
2
5
,
l
o
g
2
7
)
0%
[
l
o
g
3
4
,
l
o
g
3
8
]
0%
(
−
3
2
,
1
)
0%
(
−
1
,
0
)
In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B, 12 people liked products C and A, 14 people liked products B and C and 8 liked all the three products. Find how many liked product C only.
Report Question
0%
10
0%
11
0%
12
0%
13
Explanation
Let
A
,
B
, and
C
be the set of people who like
p
r
o
d
u
c
t
A
,
p
r
o
d
u
c
t
B
,
a
n
d
p
r
o
d
u
c
t
C
respectively.
Accordingly,
n
(
A
)
=
21
,
n
(
B
)
=
26
,
n
(
C
)
=
29
,
n
(
A
∩
B
)
=
14
,
n
(
C
∩
A
)
=
12
,
n
(
B
∩
C
)
=
14
,
n
(
A
∩
B
∩
C
)
=
8
The Venn diagram for the given problem can be drawn as above.
It can be seen that number of people who like product C only is
={29 – (4 + 8 + 6)} = 11
The number of subsets
R
of
P=(1,2,3,....,9)
which satisfies the property "There exit integers a<b<c with a
\in
R, b
\in
R,c
\in
R" is
Report Question
0%
512
0%
466
0%
467
0%
None of these
Explanation
Every subset of P containing at least 3 elements from P will always satisfy the required property since each number is distinct in the set P.
So, Total no. of ways =
^{9}C_3 + ^{9}C_4 + .... + ^{9}C_9
= (^{9}C_0 + ^{9}C_1 + ..... + ^{9}C_9) - ^{9}C_0 - ^{9}C_1 - ^{9}C_2
=2^9 - 46
=512 -46
=466
In a universal set x,
n\left( x \right) = 50
,
n\left( A \right) = 35
,
n\left( B \right) = 20
,
n\left( {A' \cap B'} \right) = 5
,then
n\left( {A \cup B} \right),n\left( {A \cap B} \right)
are repsectively
Report Question
0%
45,10
0%
10,45
0%
25,30
0%
15,25
Explanation
Given
n\left(X\right) = 50
,
n\left(A\right) = 35
,
n\left(B\right) = 20
n\left({A}^{\prime}\cap\,{B}^{\prime}\right) = 5
(i)\,n\left(A \cup B\right)
n\left({A}^{\prime}\cap\,{B}^{\prime}\right) = n\left(X\right) - n\left(A\cup\,B\right)
n\left(A\cup\, B\right) = n\left(X\right) - n\left({A}^{\prime}\cap\,{B}^{\prime}\right)
n\left(A\cup\, B\right) = 50 - 5= 45
(ii) n\left(A \cap B\right)
n\left(A\cup B\right) = n\left(A\right) + n\left(B\right) - n\left(A\cap B\right)
n\left(A\cap\, B\right) = n\left(A\right) + n\left(B\right) - n\left(A\cup\, B\right)
n\left(A\cap\, B\right) = 35 + 20 - 45= 10
If
A
and
B
are two non empty sets then
( A \cup B ) ^ { C } = ?
Report Question
0%
A ^ { C } \cup B ^ { C }
0%
A ^ { C } \cap B ^ { C }
0%
A \cup B ^ { C }
0%
A ^ { C } \cap B
Explanation
If A and B are two no empty sets then
{ \left( A\cup B \right) }^{ C }={ A }^{ C }\cap { B }^{ C }
Let
S={1,2,3,.....10}
and
P={1,2,3,4,5}
The number of subsets
'Q'
of
S
such that
p \cup Q=S
, are.....
Report Question
0%
128
0%
256
0%
32
0%
64
Let
Q
be a non empty subset of
N
and
q
is a
statement as given below :
q:
There exists an even number
a \in Q
Negation of the statement
q
will be :
Report Question
0%
There is no even number in the set
Q
0%
Every
a \in Q
is an odd number.
0%
(a)
and
(b)
both
0%
None of these
Explanation
Let
Q
be a non empty subset of
N
and
q.
There exists even number
a\in Q
negation of statement
q.
There does not exist a even number in set Q.
Hence, the answer is there is no even number in the set
Q.
If the number of
5
elements subsets of the set
A\left\{\ a_{1},a_{2}.....a_{20}\right\}
of
20
distinct elements is
k
times the number of
5
elements subsets containing
a_{4}
, then
k
is
Report Question
0%
5
0%
\dfrac{20}{7}
0%
4
0%
\dfrac{10}{3}
Explanation
No of
5
elements subset
=^{20}C_{5}=\dfrac {20!}{15! \, 15!}=\dfrac {20 \times 19\times 18\times 17\times 16\times 15!}{15! \, 5\times 4\times 3\times 2\times 1}=15504
No of
5
elements subset containing
a_{4}
=^{19}C_{4}=\dfrac {19!}{4! \, 15!}
\Rightarrow \dfrac {20!}{15! \, 15!}=k\dfrac {19!}{4!\, 15!}
\Rightarrow \dfrac {20\times 19!}{5\times 4!}=k\dfrac {19!}{4!}
\Rightarrow k=4
In a battle
70
% of the combatants lost one eye,
80
% an ear,
75
% an arm,
85
% a leg,
x
% lost all the four limbs the minimum value of
x
is
Report Question
0%
10
0%
12
0%
15
0%
5
Explanation
70\%
of the combatants lost one eye,
80\%
an ear,
75\%
an arm and
85\%
a leg.
Now,
\Rightarrow
The combatants who lost one eye and one ear
=(70+80-100)\%
=50\%
\Rightarrow
The combatants who lost one eye, one ear and one erm
=(50+75-100)\%
=25\%
\Rightarrow
The combatants who lost one eye, one ear one arm and one leg
=(25-85-100)\%
=10\%
\therefore
Combatant who lost all the four limbs
=10\%
\therefore
x=10\%
The value of set
(A\cup B\cup C)\cap(A\cap B^1\cap C^1)^1\cap C^1
is equal to
Report Question
0%
B\cap C^1
0%
A\cap C
0%
B\cap C^1
0%
A\cap C^1
Two sets A and B are defined as follows
A=\left\{ \left( x,y \right) :y={ e }^{ 2x },x\in R \right\}
and
B=\left\{ \left( x,y \right) :y={ x }^{ 2 },x\in R \right\}
, then
Report Question
0%
A\subset B
0%
B\subset A
0%
A\bigcup B
0%
A\cap B=\phi
Explanation
\begin{array}{l} A=\left\{ { \left( { x,\, y } \right) \, :\, y={ e^{ 2x } },\, x\in R } \right\} \, and \\ B=\left\{ { \left( { x,\, y } \right) \, :\, y={ x^{ 2 } },\, x\in R } \right\} \\ then, \\ A=\left( { { e^{ \circ } },\, { e^{ 1 } },\, { e^{ 2 } },....,\, { e^{ \infty } } } \right) \\ =\left( { 1,\, { e^{ 1 } },\, { e^{ 2 } },....... } \right) \\ and, \\ B=\left( { 0,\, 1,\, 4,\, ..... } \right) \\ \therefore A\subset B \\ Hence,\, the\, option\, A\, is\, the\, correct\, answer. \end{array}
If two sets
P
and
Q,n\left(P\right)=5,n\left(Q\right)=4
then
n\left(P\times Q\right)=
Report Question
0%
20
0%
9
0%
25
0%
5/4
Explanation
\begin{aligned} n(P \times Q) &=n(P) \times n(Q) \\ &=5 \times 4 \\ &=20 \end{aligned}
\therefore
option
A
is correct.
If A= {1, 2, 5} and B= {3, 4, 5, 9}, then
A \bigcup B
is equal to :
Report Question
0%
\{1, 2, 5, 9\}
0%
\{1, 2, 3, 4, 9\}
0%
\{1, 2, 3, 4, 5, 9\}
0%
None of these
Explanation
A=\left\{ 1,2,5 \right\} \quad B=\left\{ 3,4,5,9 \right\}
A\cup B=\left\{ 1,2,3,4,5,9 \right\}
Option C.
If P(S) denotes the set of all subsets of a given set S, then the number of one to one function from the set s={1,2,3} to the set of P(S) is
Report Question
0%
336
0%
8
0%
36
0%
320
Explanation
\begin{array}{l} Given \\ P\left( s \right) =\left\{ { 1,\, 2,\, 3 } \right\} \\ P\left( s \right) =all\, subset\, of\, 5 \\ =\left\{ { \phi ,\left\{ 1 \right\} ,\left\{ 3 \right\} ,\left\{ { 1,2 } \right\} ,\left\{ { 2,3 } \right\} ,\left\{ { 3,1 } \right\} ,\left\{ { 1,2,3 } \right\} } \right\} \\ No.\, of\, element\, of\, 5=0\left( 5 \right) =3 \\ similarly \\ O\left( { p\left( s \right) } \right) =8 \\ Total\, no.\, of\, one-one\, function \\ =\frac { { n! } }{ { \left( { n-m } \right) ! } } \, ,\, where\, n=o\left( { p\left( s \right) } \right) \, and\, m=o\left( 5 \right) \\ =\frac { { 8! } }{ { \left( { 8-3 } \right) ! } } =\frac { { 8! } }{ { 5! } } \\ =336\, \, \\ No.\, of\, one-one\, function\, is\, 336 \\ Hence,\, \, option\, \, A\, \, is\, correct, \end{array}
Consider following expressions
P =
\prod_{\theta = 1}^{100}cos\theta
; Q =
\prod_{\phi = 1}^{10}cos\phi
; R = log cosec 0.8
\pi
Then number of non-positive elements in the set {P, Q, R} is
Report Question
0%
0
0%
1
0%
2
0%
3
If
A=\left\{1,2,3,4\right\}; B=\left\{2,4,6,8\right\}; C=\left\{3,4,5,8\right\}
then
A\cap B\cap C=
Report Question
0%
\phi
0%
{4}
0%
\mu
0%
{2,4}
Explanation
\begin{matrix} A=\left\{ { 1,2,3,4 } \right\} \\ B=\left\{ { 2,4,6,8 } \right\} \\ C=\left\{ { 3,4,5,8 } \right\} \\ A\cap B\cap C=\left\{ { 4 } \right\} . \\ \end{matrix}
If n(A)=3, n(B)=4, then
n(A\times B\times C)=36 find \,n(C)
is equal to :
Report Question
0%
3
0%
12
0%
108
0%
none of these
Explanation
n(A)=3
n(B)=4
n(A\times B\times C)=36
n(3\times 4\times C)=36
n(12\times C)=36
\therefore n(C)=3
So,
n(A\times B\times C)=36
n(3\times 4\times 3)=36
. H.P.
The function
f(x)
satisfies the condition
(x-2)f(x)+2f\left(\dfrac{1}{x}\right)=2
for all
x\neq 0
. Then the value of
f(2)
is
Report Question
0%
\dfrac{1}{2}
0%
1
0%
\dfrac{7}{4}
0%
\dfrac{-3}{2}
Explanation
Putting
x=2
in
\left( x-2 \right) f\left( x \right) +2f\left( \dfrac { 1 }{ x } \right) =2
\left( 2-2 \right) f\left( 2 \right) +2f\left( \dfrac { 1 }{ 2 } \right) =2
2f\left( \dfrac { 1 }{ 2 } \right) =2
f\left( \dfrac { 1 }{ 2 } \right) =1
Let A,B are two sets such that n(A)=4 and n(B)=Then the least possible number of elements in the power set of
(A\cup B)
is
Report Question
0%
16
0%
64
0%
256
0%
1024
Explanation
Given,
n(A)=4,n(B)=6
Then the least number of possible elements in
n(A\cup B)=2^{n(A)}.2^{n(B)}=2^4.2^6=2^{10}=1024
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page