CBSE Questions for Class 11 Engineering Maths Sets Quiz 13 - MCQExams.com

Let R = {(1, 3), (4, 2), (2, 3), (3, 1)} be a relation on the set A = (1, 2, 3, 4). The relation R is
  • Transitive
  • Symmetric
  • Reflexive
  • None of these
$$13$$ Planar Surfaces, each of area $$1\ m^{2}$$ are such that their total area is $$7\ m^{2}$$. If no three of more of these surfaces have any region in common; Then, the overlap of some Two of These surfaces has an Area.
  • Not less than $$\dfrac{7}{13} m^{2}$$
  • Not less than $$\dfrac{2}{13} m^{2}$$
  • Not less than $$\dfrac{1}{13} m^{2}$$
  • Not Less than $$\dfrac{1}{17} m^{2}$$
Consider that $$n(S)$$ represented the number of elements in set S. If $$n(A\cup B\cup C)=40, n(A\cap B'\cap C')=5, n(B\cap A'\cap C')=10, n(C\cap B' \cap A')=6$$ then number of element which belongs to at least two of the set is 
  • Less than $$19$$
  • More than $$21$$ but less than $$40$$
  • $$19$$
  • $$20$$
If n(A)=115, n(B)=326, n(A-B)=47, then $$n(A\cup B)$$ is equal to
  • 373
  • 165
  • 370
  • none of these
For 3 sets A,B,C if A$$\subset B,B\subset C$$ then
  • A$$\cup B\subset C$$
  • C$$\subset A\cup B$$
  • A-B=C
  • None of these
Suppose $$A_1 , A_2,... A_{30}$$ are thirty sets each having 5 elements and $$B_1, B_2,..., B_n$$ are n sets each with 3 elements , let $$\underset{i = 1}{\overset{30}{\cup}} A_i = \underset{j = 1}{\overset{n}{\cup}} B_j = S$$ and each element of S belongs to exactly 10 of the $$A_i's$$ and exactly 9 of the $$B_j'S$$. then n is equal to
  • 15
  • 3
  • 45
  • 35
Let A and B be two sets containing four and two elements respectively. Then the number of subsets of the set $$A \times B$$, each having at least three elements is............
  • $$275$$
  • $$510$$
  • $$219$$
  • $$256$$
The value of $$\left( {A \cup B \cup C} \right) \cap \left( {A \cap {B^c} \cap {C^c}} \right) \cap {C^c}$$ is 
  • $$B \cap {C^c}$$
  • $${B^c} \cap {C^c}$$
  • $$B \cap {C}$$
  • $$A \cap {B^c} \cap {C^c}$$
If A =[a,b],B={c,d} and C={d,e}, then { (a,c),(a,d),(a,e),(b,c),(b,d),(b,e) is equal to 
  • $$A\cap (B\cup C)$$
  • $$A\cup (B\cap C)$$
  • $$A\times (B\cup C)$$
  • $$A\times (B\cap C)$$
The number of subsets $$R\,of\,P\, = \left\{ {1,2,3,....8} \right\}$$ which satisfies the property 'There exist integers $$a < \,b < \,c$$ with $$a\, \in \,R,b\, \notin \,R,c\, \in \,R''\,$$ is
  • 215
  • 219
  • 222
  • 223
Given $$n(U) =20, n(A) =12, n(B) =9, n(A \cap B) =4$$, where U is the universal set, A and B are subset of U, then $$n((A \cup B)^C)=$$
  • $$17$$
  • $$9$$
  • $$11$$
  • $$3$$
if S is a set of p(x) is polynomial of degree <2 such that p(0)=, P(1)=1, p(x)>0 $$\forall \quad x\quad \varepsilon $$ (0, 1) then 
  • S=0
  • $$S=ax+91-1){ x }^{ 2 }\forall a\varepsilon (0,\infty )$$
  • $$S=ax+(1-a){ x }^{ 2 }\forall a\varepsilon R$$
  • $$S=ax+(1-a){ x }^{ 2 }\forall a\varepsilon R(0,\quad 2)$$
Let $$A,B,C$$ finite sets. Suppose then $$n(A)=10, n(B)=15, n(C)=20, n(A\cap B)=8$$ and $$n(B\cap C)=9$$. Then the possible value of $$n(A\cup B\cup C)$$ is
  • $$26$$
  • $$27$$
  • $$28$$
  • Any of the three values $$26, 27, 28$$ is possible
X and Y are two sets and $$f:X\rightarrow Y$$. If $$f(c)=\left\{ y;c\subset X,y\subset Y \right\} $$ and $${ f }^{ 1 }(d)=\left\{ x;d\subset Y,x\subset X \right\} $$, then the true statement is
  • $$f({ f }^{ 1 }(b))=b$$
  • $$f({ f }^{ 1 }(a))=a$$
  • $$f({ f }^{ 1 }(b))=b,b\subset y$$
  • $$f({ f }^{ 1 }(a))=a,a\subset x$$
A = {n/n is a digits in the number 33591} and $$B=\left\{ n/n\in N,n<10 \right\} ,$$ then $$B-A = $$
  • $$\left\{ 2,4,6,8 \right\} $$
  • $$\left\{ 7,2,4,8,6 \right\} $$
  • $$\left\{ 1,3,5,7 \right\} $$
  • $$\left\{ \left( 1,2 \right) ,\left( 1,3 \right) ,\left( 2,3 \right) \right\} $$
Let A, B, C be three seta such that A $$\cup$$ B $$\cup$$ C = $$U$$ , where $$U$$ is the universal set then , 
[(A B) $$\cup$$ (B C) $$\cup$$ (C A)] is equal to
  • A $$\cup$$ B $$\cup$$ C
  • A $$\cup$$ (B $$\cap$$ C)
  • A $$\cap$$ B $$\cap$$ C
  • A $$\cap$$ (B $$\cup$$ C)
Let $$n\left( U \right) =700,n\left( A \right) =200,n\left( B \right) =300$$ and $$n\left( A\cap B \right) =100,$$ then $$n\left( { A }^{ c }\cap { B }^{ c } \right) =$$
  • 400
  • 600
  • 300
  • 200
Which set is most like the given set?
(8, 18, 37)

  • (4, 9, 20)
  • (16, 33, 67)
  • (13, 30, 67)
  • (5, 12, 25)
If $$A = \{ 4,5,8,12 \} , B = \{ 1,4,6,9 \} \text { and } C = \{ 1,2,3,4 \}$$ then $$A - ( C - B ) =$$
  • $$A$$
  • $$B$$
  • $$C$$
  • $$\phi$$
Tell whether set A is a subset of set B. 
  • set A : whole numbers less than 8
    set B : whole numbers less than 10
  • set A : prime numbers
    set B : odd numbers
  • set A : numbers divisible by 6
    set B : numbers divisible by 3
  • set A : set of letters in the word 'FLAT'
    set B : set of letters in the word 'PLATE'
The solution set of $$x^{2}+5x+6=0 $$ is ........
  • {2,3}
  • {-2,-3}
  • {2,-3}
  • {-2,3}
If $$P = \{ x:x < 3,x \in N\} $$ and $$Q = \{ x:x \le 2,x \in W\} $$, where W is the set of whole numbers then the set of whole numbers then the set $$(P \cup Q) \times (P \cap Q)$$ is
  • $${(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}$$
  • $$(0,1),(0,2),(1,1),(1,2),(2,1),(2,2)$$
  • $$(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)$$
  • $$(1,1),(1,2),(2,1),(2,2)$$
If $$\text{A} = \{ 1,2,3,4,5\} \,,\text{B} = \{ 2,3,5,6\} $$ and $$\text{C} = \{ 4,5,6,7\} $$
Then, which of the following is true?
  • $$A \cup \left( {B \cap C} \right) = \left( {A \cup B} \right) \cap (A \cup C)$$
  • $$ {A \cup B} =\{1,2,3,4,5\}$$
  • $$ {A \cup B} =\{1,2,3,4,5,6\}$$
  • Both $$\text{A}$$ and $$\text{C}$$
If $$n\left( {P \cap Q} \right) = 23,\,\,n\left( {P \cup Q} \right) = 57,$$ and $$n\left( {Q - P} \right) = 26,$$ then $$n\left( {P - Q} \right) = \_\_\_\_\_\_\_\_.$$
  • 24
  • 54
  • 8
  • 14
if P and Q are two sets having 5 elements in com- mon, then how many elenents do P $$ \times $$ Q and Q $$ \times $$ P have in common? 
  • 5
  • 10
  • 25
  • 20
$$If\,\,A = \left\{ {x:{x^2} = 1} \right\}\,\,\,and\,B = \left\{ {x:{x^4} = 1} \right\},\,then\,A\Delta B\,\,\,is\,\,equal\,to\,$$
  • $$\left\{ {i, - i} \right\}\,$$
  • $$\,\left\{ { - 1,1} \right\}\,$$
  • $$\left\{ { - 1,1,i - i} \right\}$$
  • $$\,\left\{ {1,i} \right\}$$
Let $$A$$ and $$B$$ be two sets. The $$(A\cup B)'\cup(A'\cap B)$$=
  • $$A'$$
  • $$A$$
  • $$B'$$
  • $$none\ of\ these$$
Examine whether the following statements are true or false:
$$\left\{a\right\}\subset \left\{\{a\},\, b \right\}$$
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers