Explanation
We have,
A(x1,y1)=(x1,y1)
B(x2,y2)=(x2,y2)
C(x3,y3)=(3y2,−2y1)
We know that the area of triangle is
AreaofΔABC=12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]
=12[x1(y2+2y1)+x2(−2y1−y1)+3y2(y1−y2)]
=12[x1y2+2x1y1−3x2y1+3y2y1−3y22]
Hence, the is the answer
Consider the given point
A(x1,y1)=(0,0)
B(x2,y2)=(3,√3)
C(x3,y3)=(p,q)
Then,
We know that it is an equilateral triangle,
AB=BC
⇒√(x1−x2)2+(y1−y2)2=√(x2−x3)2+(y2−y3)2
⇒√(0−3)2+(0−√3)2=√(3−p)2+(√3−q)2
⇒√12=√9+p2−6p+3+q2−2√3q
Squaring both side and we get,
⇒12=p2+q2−6p−2√3q+12
⇒p2+q2−6p−2√3q=0 ....... (1)
Again,
AB=CA
⇒√(x1−x2)2+(y1−y2)2=√(x3−x1)2+(y3−y1)2
⇒√(0−3)2+(0−√3)2=√(p−0)2+(q−0)2
⇒√12=√p2+q2
squaring both side and we get,
p2+q2=12…… (2)
By equation (1) and (2) to, and we get,
12−6p−2√3q=0
⇒6p+2√3q=12
⇒3p+√3q=6
⇒3p=6−√3q
⇒p=6−√3q3
Put the value of p in equation (2) and we get,
p2+q2=12
⇒(6−√3q3)2+q2=12
⇒36+3q2−12√3q+9q2=108
⇒12q2−12√3q=72
$$\begin{align}
⇒12(q2−√3q−6)=0
⇒q2−√3q−6=0
⇒q2−2√3q+√3q−6=0
⇒q(q−2√3)+√3(q−2√3)=0
⇒(q−2√3)(q+√3)=0
Then, q=2√3,q=−√3
Now, According to given question,
q=q1+q2
q=2√3−√3
q=√3
Hence, this is the answer.
Since, C trisects AB
Now,
x1=1,y1=ln1=0
x2=1000,y2=ln1000=3
Now, Ratiom1:m2=1:2
a=m1x2+m2x1m1+m2
=1×1000+2×11+2
=10023
a=334
b=m1y2+m2y1m1+m2
=1×ln1000+2×01+2
b=ln10003.......(1)
Given the curve
y=lnx......(2)
From equation (1) and (2) to,
lnx=ln10003
3lnx=ln1000
lnx=(ln1000)13
x=(1000)13
x=10
Hence,x3=10
Step -1: Finding all the side lengths.
Let (4,0) be point A,(−1,−1) be point B,(3,5) be point C
AB=√(4−(−1))2+(0−(−1))2=√52+12=√26
BC=√(−1−3)2+(−1−5)2=√(−4)2+(−6)2=√52
CA=√(3−4)2+(5−0)2=√(−1)2+(5)2=√26
∴AB=CA Hence, the triangle is isosceles.
Step -2: Checking whether the triangle is right angled.
AB2=26
BC2=52
CA2=26
⇒AB2+CA2=26+26=52=BC2
Hence, the triangle is right angled.
Hence, the triangle with vertices (4,0), (-1,-1), (3,5) is isosceles and right angled.
Please disable the adBlock and continue. Thank you.