Explanation
Distance between two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculatedusing the formula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Distance between P (x,y) and A (3,6) = PA = \sqrt { \left( 3-x \right) ^{ 2 }+\left( 6 - y \right) ^{ 2 } } = \sqrt { { 3}^{ 2 }+ { x }^{ 2 } - 6x + { 6}^{ 2 }+ { y }^{ 2 } - 12y } = \sqrt { { x }^{ 2 } - 6x + { y }^{ 2 } - 12y + 45 }
Distance between P (x,y) and B (-3,4) = PB = \sqrt { \left( -3-x \right) ^{ 2 }+\left( 4 - y \right) ^{ 2 } } = \sqrt { 9 + { x }^{ 2 } + 6x + 16 + { y }^{ 2 } - 8y } = \sqrt { { x }^{ 2 } + 6x + { y }^{ 2 } - 8y + 25 } Given, PA = PB \sqrt { { x }^{ 2 } - 6x + { y }^{ 2 } - 12y + 45 } = \sqrt { { x }^{ 2 } + 6x + { y }^{ 2 } - 8y + 25 } => { x }^{ 2 } - 6x + { y }^{ 2 } - 12y + 45 = { x }^{ 2 } + 6x + { y }^{ 2 } - 8y + 25 12x + 4y - 20 = 0 3x + y - 5 = 0
Let the point on the y-axis be, (0,y)
Distance Formula =\sqrt{ { \left( {x_2}-{ { x_1 } } \right) }^{ 2}+{ \left( {y_2 }-{ y_1 } \right) }^{ 2 } }
Distance between (0,y) and (3,1) = \sqrt { \left( 3-0 \right) ^{ 2 }+\left( 1 - y \right) ^{ 2 } } = \sqrt { 9 + { 1}^{ 2 }+ { y }^{ 2 } - 2y } = \sqrt { { y }^{ 2 } - 2y + 10 } Distance between (0,y) and (1,5) = \sqrt { \left( 1-0 \right) ^{ 2 }+\left( 5 - y \right) ^{ 2 } } = \sqrt { 1 + { 5}^{ 2 }+ { y }^{ 2 } - 10y } = \sqrt { { y }^{ 2 } - 10y + 26 } As the point, (0,y) is equidistant from the two points, distance between (0,y) ; (3,1) and (0,y) ; (1,5) are equal.
\sqrt { { y}^{ 2 } - 2y + 10 } = \sqrt { { y }^{ 2 } - 10y + 26 } \Rightarrow { y }^{ 2 } - 2y + 10 = { y }^{ 2 } - 10y + 26
8y = 16
y = 2
Thus, the point is (0,2)
Distance between two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculated using theformula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Given, Distance between the points (2,3) ; (k,1) = Distance between $$ (2,3) ; (7,k) $$
\sqrt { \left( k - 2 \right) ^{ 2 }+\left( 1 - 3 \right) ^{ 2 } } = \sqrt { \left( 7 - 2 \right) ^{ 2 }+\left( k - 3 \right) ^{ 2 } }
=> \left( k- 2 \right) ^{ 2 }+ 4 = 25 +\left( k - 3 \right) ^{ 2 }
On expanding the squares and simplifying, we get k = 13
Distance between two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculated using the formula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Distance between the points P and Q = \sqrt { \left( 0 - 5 \right) ^{ 2 }+\left( -12 \right) ^{ 2 } } = \sqrt { 22 + 144 } = \sqrt { 169 } = 13
Let the point on the x-axis be (0,y) Distance between (0,y) and (-3,4) = \sqrt { \left( -3-0 \right) ^{ 2 }+\left( 4 - y \right) ^{ 2 } } = \sqrt { 9 + { 4}^{ 2 }+ { y }^{ 2 } - 8y } = \sqrt { { y }^{ 2 } - 8y + 25 } Distance between (0,y) and (2,3) = \sqrt { \left( 2-0 \right) ^{ 2 }+\left( 3 - y \right) ^{ 2 } } = \sqrt { 4 + { 3}^{ 2 }+ { y }^{ 2 } - 6y } = \sqrt { { y }^{ 2 } - 6y + 13 } As the point (0,y) is equidistant from the two points, both the distancescalculated are equal. \sqrt { { y }^{ 2 } - 8y + 25 } = \sqrt { { y }^{ 2 } - 6y + 13 } => { y }^{ 2 } - 8y + 25 = { y }^{ 2 } - 6y + 13 12 = 2y y = 6 Thus, the point is (0,6)
\Rightarrow \sqrt { { (x - 2) }^{ 2 } + {8}^{2} } = 10
\Rightarrow { { (x - 2) }^{ 2 }+ 64 } = 100
\Rightarrow { (x - 2) }^{ 2 } = 36
\Rightarrow x - 2 = + 6 or - 6
\Rightarrow x = 8 or -4
Let the points be A(2,-2), B(-2,1), C(5,2) .Distance between two points \left( { x }_{ 1 },{ y }_{ 1} \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculated using the formula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } }
Hence, Length of side AB = \sqrt { \left(-2-2 \right) ^{ 2 }+\left(1 + 2\right) ^{ 2 } } = \sqrt { 16+ 9 } = \sqrt { 25 } = 5
Length of side BC = \sqrt {\left(5 + 2\right) ^{ 2 }+\left(2-1\right) ^{ 2 } } = \sqrt { 49 + 1 } = \sqrt { 50}
Length of side AC = \sqrt { \left(5-2 \right) ^{ 2 }+\left(2+ 2\right) ^{ 2 } } = \sqrt { 9+16 } = \sqrt { 25 } = 5
Distance between two points \left( { x }_{ 1 },{ y }_{ 1 } \right) and \left( { x }_{ 2 },{ y }_{ 2 } \right) can be calculated using the formula \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } Let the point on the x-axis be (x,0) Distance between (x,0) and (-2,5) = \sqrt { \left( -2-x \right) ^{ 2 }+\left( 5 - 0 \right) ^{ 2 } } = \sqrt { 4 + { x }^{ 2 } + 4x + 25 } = \sqrt { { x }^{ 2 } + 4x + 29 } Distance between (x,0) and (2,-3) = \sqrt { \left( 2-x \right) ^{ 2 }+\left( -3 - 0 \right) ^{ 2 } } = \sqrt { 4 + { x }^{ 2 } - 4x + 9 } = \sqrt { { x }^{ 2 } - 4x + 13 } As the point (x,0) is equidistant from the two points, both the distances calculated are equal. \sqrt { { x }^{ 2 } + 4x + 29 } = \sqrt { { x }^{ 2 } - 4x + 13 } => { x }^{ 2 } + 4x + 29 = { x }^{ 2 } - 4x + 13 4x + 4x = 13-29 8x = -16 x = -2 Thus, the point is (-2,0)
Area of a triangle with vertices ({ x }_{ 1 },{ y }_{ 1 }) ; ({ x }_{ 2 },{ y }_{ 2 }) and ({ x }_{ 3 },{ y }_{ 3 }) is \left| \dfrac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 } \right| Hence, substituting the points ({ x }_{ 1 },{ y }_{ 1 }) = (-2,5) ; ({ x }_{ 2 },{ y }_{ 2 }) = (2,-3) and ({ x }_{ 3 },{ y }_{ 3 }) = (-2,0) in the area formula, we get area of triangle = \left| \dfrac { (-2)(-3+0)+(2)(0-5)+(-2)(5+3) }{ 2 } \right| = \left| \dfrac { 6 - 10 -16 }{ 2 } \right| = \dfrac {20}{2} = 10 sq. units
Please disable the adBlock and continue. Thank you.