CBSE Questions for Class 11 Engineering Maths Straight Lines Quiz 8 - MCQExams.com

In the figure, $$AC = 9, BC = 3$$ and $$D$$ is $$3$$ times as far from $$A$$ as from $$B$$. What is $$BD$$?
534894.PNG
  • 6
  • 9
  • 12
  • 15
  • 18
If the area of the triangle shown is $$30$$ square units, what is the value of $$y$$?
534072.PNG
  • $$5$$
  • $$6$$
  • $$8$$
  • $$12$$
If the distance between the two points $$P(a,3)$$ and $$Q(4,6)$$ is $$5$$, then find $$a$$.
  • $$0$$
  • $$-4$$
  • $$8$$
  • $$-4$$ and $$0$$
  • $$0$$ and $$8$$
In the $$xy$$-plane, the vertices of a triangle are $$(-1,3), (6,3)$$ and $$(-1,-4)$$. The area of the triangle is ___ square units.
  • $$10$$
  • $$17.5$$
  • $$24.5$$
  • $$35$$
If figure $$\Box ABCD$$ABCD is a parallelogram, what is the x-coordinate of point B?
534063_9b116b5b4cea41128409e7c9dd5599ae.png
  • $$2$$
  • $$5$$
  • $$6$$
  • $$8$$
In the figure, there is a regular hexagon with sides of length $$6$$. If the coordinate of $$A$$ is $$(9,0)$$, what is the y-coordinate of $$B$$?
534227.PNG
  • $$0$$
  • $$3$$
  • $$3\sqrt{2}$$
  • $$3\sqrt{3}$$
Let $$S$$ be the set of points whose abscissas and ordinates are natural numbers. Let $$P \in S$$ such that the sum of the distance of $$P$$ from $$(8,0)$$ and $$(0,12)$$ is minimum among all elements in $$S$$. Then the number of such points $$P$$ in $$S$$ is
  • $$1$$
  • $$3$$
  • $$5$$
  • $$11$$
Which of the following sets of points is collinear
  • $$(1, -1), (-1, 1), (0, 0)$$
  • $$(1, -1), (-1, 1), (0, 1)$$
  • $$(1, -1), (-1, 1), (1, 0)$$
  • $$(1, -1), (-1, 1), (1, 1)$$
Area of the triangle formed by the points $$\left( 0,0 \right) ,\left( 2,0 \right) $$ and $$\left( 0,2 \right) $$ is 
  • $$1$$ sq. unit
  • $$2$$ sq. units
  • $$4$$ sq. units
  • $$8$$ sq. units
The vertices of $$\triangle {ABC}$$ are $$A(1,8),B(-2,4), C(8,-5)$$. If $$M$$ and $$N$$ are the midpoints of $$AB$$ and $$AC$$ respectively, find the slope of $$MN$$ and hence verify that $$MN$$ is parallel to $$BC$$.
  • $$-\cfrac{9}{10}$$
  • $$\cfrac{9}{10}$$
  • $$-\cfrac{9}{5}$$
  • None of these
What is the perimeter of the triangle with vertices $$A (-4, 2), B (0, -1)$$ and $$C (3, 3)$$?
  • $$ 7 + 3 \sqrt{2} $$
  • $$ 10 + 5 \sqrt{2} $$
  • $$ 11 + 6 \sqrt{2} $$
  • $$ 5 + 10 \sqrt{2} $$
The vertices of a triangle ABC are A(2, 3, 1), B(-2, 2, 0) and C(0, 1, -1). Find the cosine of angle ABC.
  • $$\frac{1}{\sqrt{3}}$$
  • $$\frac{1}{\sqrt{2}}$$
  • $$\frac{2}{\sqrt{6}}$$
  • None of the above
Area of the triangle formed by the points $$(0,0),(2,0)$$ and $$(0,2)$$ is
  • $$1$$ sq.units
  • $$2$$ sq.units
  • $$4$$ sq.units
  • $$8$$ sq.units
Find the value of $$a$$ if area of the triangle is $$17$$ square units whose vertices are $$(0,0), (4,a), (6,4)$$.                         
  •  $$a=-2$$
  •  $$a=-3$$

  •  $$a=3$$
  • none of the above
The slope of a straight line passing through A( -2, 3) is  -4/The points on the line that are 10 units  away from A are 
  • (-8, 11), (4, -5)
  • (- 7, 9), (17,-1)
  • (7, 5) (- 1, -1)
  • (6, 10), (3, 5)
If the equation to the locus o points equidistant from the points (-2,3),(6,-5) is $$ax+by+c=0$$ where $$a> 0$$ then, the ascending order of a,b,c is  
  • a,b,c
  • c,b,a
  • b,c,a
  • a,c,b
The point on the line $$4x+3y=5$$, which is equidistant from $$\left( 1,2 \right)$$ and $$\left( 3,4 \right) $$, is
  • $$\left( 7,-4 \right) $$
  • $$\left( -10,15 \right) $$
  • $$\left( \dfrac { 1 }{ 7 } ,\dfrac { 8 }{ 7 } \right) $$
  • $$\left( 0,\dfrac { 5 }{ 4 } \right) $$
$$A=(4, 2)$$ and $$B=(2, 4)$$ are two given points and a point $$P$$ on the line $$3x + 2y + 10 = 0 $$ is given then. which of the following is true.
  • $$(PA + PB)$$ is minimum when $$P (\dfrac {-14}{5}, \dfrac {-4}{5}) $$
  • $$(PA + PB)$$ is maximum when $$P (\dfrac {-14}{5}, \dfrac {-4}{5}) $$
  • $$(PA - PB)$$ is maximum when $$ (-22, 28) $$
  • $$(PA - PB)$$ is minimum when $$ P (-22, 28) $$
If the slop of one of the lines represented by $$ax^2-6xy+y^2=0$$ is the square of the other,then the value of a is
  • $$-27$$ or $$8$$
  • $$-3$$ or $$2$$
  • $$-64$$ or $$27$$
  • $$-4$$ or $$3$$
Find the area (in square units) of the triangle whose vertices are $$(a, b+c), (a, b-c) $$ and $$(-a, c). $$
  • $$2ac$$
  • $$2bc$$
  • $$b(a+c)$$
  • $$c(a-h)$$
If D (3, -1), E (2, 6) and F (5, 7) are the vettices of the sides of $$\Delta DEF$$, the area of triangle DEF is sq. units. 
  • $$11$$
  • $$22$$
  • $$48$$
  • $$50$$
If the straight line $$ax + by + p = 0$$ and $$x\cos \alpha + y \sin \alpha = p$$ enclosed an angle of $$\dfrac {\pi}{4}$$ and the line $$x\sin \alpha - y \cos \alpha = 0$$ meets them at the same point, then $$a^{2} + b^{2}$$ is
  • $$4$$
  • $$3$$
  • $$2$$
  • $$1$$
The distance of the point $$A(a, b, c)$$ from the x-axis is
  • $$a$$
  • $$\sqrt {b^{2} + c^{2}}$$
  • $$\sqrt {a^{2} + b^{2}}$$
  • $$a^{2} + b^{2}$$
How many points $$(x, y)$$ with integral co-ordinates are there whose distance from $$(1, 2)$$ is two units?
  • One
  • Two
  • Three
  • Four
The distance between the points $$\left( a\cos { { 48 }^{ o } } ,0 \right) $$ and $$\left( 0,a\cos { { 12 }^{ o } }  \right) $$ is $$d$$ then $${ d }^{ 2 }{ a }^{ 2 }=$$
  • $${ a }^{ 2 }\cfrac { \left( \sqrt { 5 } +9 \right) }{ 4 } $$
  • $${ a }^{ 2 }\cfrac { \left( \sqrt { 5 } -1 \right) }{ 4 } $$
  • $${ a }^{ 2 }\cfrac { \left( \sqrt { 5 } -1 \right) }{ 8 } $$
  • $${ a }^{ 2 }\cfrac { \left( \sqrt { 5 } +1 \right) }{ 8 } $$
$$ABC$$ is an isosceles triangle. If the coordinates of the base are $$B(1,3)$$ and $$C(-2,7)$$. The vertex $$A$$ can be
  • $$(1,6)$$
  • $$(-1/2,5)$$
  • $$(-7,1/6)$$
  • $$(5/6,6)$$
The point $$P\left( x,y \right)$$ is equidistant from the points $$Q\left( c+d,d-c \right)$$ and $$R\left( c-d,c+d \right)$$ then
  • $$cx=dy$$
  • $$cx+dy=0$$
  • $$dx=cy$$
  • $$dx+cy=0$$
The area of triangle formed by the lines $$x+y-3=0$$, $$x-3y+9=0$$ and $$3x-2y+1=0$$ is:
  • $$\cfrac { 16 }{ 7 } $$ sq. units
  • $$\cfrac { 10 }{ 7 } $$ sq. units
  • $$4$$ sq. units
  • $$9$$ sq. units
A circle passes through the points $$(2, 3)$$ and $$(4, 5)$$. If its centre lies on the line, $$y - 4x + 3 = 0$$, then its radius is equal to
  • $$\sqrt {5}$$
  • $$1$$
  • $$\sqrt {2}$$
  • $$2$$
The angle between the pair of lines whose equation is $$4{ x }^{ 2 }+10xy+m{ y }^{ 2 }+5x+10y=0$$ is
  • $$\tan ^{ -1 }{ \left( \dfrac { 3 }{ 8 } \right) }$$
  • $$\tan ^{ -1 }{ \dfrac {2 \sqrt { 25-4m } }{ m+4 } }$$
  • $$\tan ^{ -1 }{ \left( \dfrac { 3 }{ 4 } \right) } $$
  • $$\tan ^{ -1 }{ \dfrac { \sqrt { 25-4m } }{ m+4 } }$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers