Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 10 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 10
In
Δ
A
B
C
, a
s
i
n
(
B
−
C
)
+
b
s
i
n
(
C
−
A
)
+
c
s
i
n
(
A
−
B
)
=
Report Question
0%
0
0%
a
+
b
+
c
0%
a
2
+
b
2
+
c
2
0%
2
(
a
2
+
b
2
+
c
2
)
Explanation
In
△
A
B
C
,
a
=
2
R
sin
A
=
2
R
sin
(
180
∘
−
(
B
+
C
)
)
=
2
R
sin
(
B
+
C
)
a
sin
(
B
−
C
)
+
b
sin
(
C
−
A
)
+
c
sin
(
A
−
B
)
=
∑
a
sin
(
B
−
C
)
=
2
R
∑
sin
(
B
+
C
)
sin
(
B
−
C
)
=
2
R
∑
(
sin
2
B
−
sin
2
C
)
(
∵
sin
(
A
+
B
)
sin
(
A
−
B
)
=
sin
2
A
−
sin
2
B
)
=
2
R
(
sin
2
B
−
sin
2
C
+
sin
2
C
−
sin
2
A
+
sin
2
A
−
sin
2
B
)
=
0
sin
2
20
+
sin
2
70
is equal to_____
Report Question
0%
1
0%
−
1
0%
0
0%
2
Explanation
sin
2
20
o
+
sin
2
70
o
=
sin
2
20
o
+
sin
2
(
90
o
−
20
o
)
=
sin
2
20
o
+
cos
2
20
o
=
1
Let
x
and
y
be
2
real numbers which satisfy the equations
(
tan
2
x
−
sec
2
y
)
=
5
a
6
−
3
and
(
−
sec
2
x
+
tan
2
y
)
=
a
2
, then the value of a can be equal to
Report Question
0%
2
3
0%
−
2
3
0%
3
2
0%
−
3
2
sin
(
A
+
B
)
.
sin
(
A
−
B
)
=
Report Question
0%
sin
2
A
−
cos
2
B
0%
cos
2
A
−
sin
2
B
0%
sin
2
A
−
sin
2
B
0%
cos
2
A
−
cos
2
B
Explanation
sin
(
A
+
B
)
.
sin
(
A
−
B
)
=
[
sin
(
A
)
cos
(
B
)
+
cos
(
A
)
sin
(
B
)
]
[
sin
(
A
)
cos
(
B
)
−
cos
(
A
)
sin
(
B
)
]
=
sin
2
A
cos
2
A
−
cos
2
A
sin
2
A
=
sin
2
A
[
1
−
sin
2
B
]
−
[
1
−
sin
2
A
]
sin
2
B
=
sin
2
A
−
sin
2
A
sin
2
B
−
sin
2
B
+
sin
2
A
sin
2
B
=
sin
2
A
−
sin
2
B
H
e
n
c
e
,
t
h
e
o
p
t
i
o
n
C
i
s
t
h
e
c
o
r
r
e
c
t
a
n
s
w
e
r
.
If
4
sin
2
x
−
1
=
0
and
0
<
x
<
2
π
, then positive values of
x
are
Report Question
0%
30
o
,
120
o
,
210
o
,
300
o
0%
30
o
,
150
o
,
210
o
,
330
o
0%
30
o
,
120
o
,
150
o
,
210
o
0%
30
o
,
160
o
,
210
o
,
320
o
Solution set of the equation
sin
2
x
+
cos
2
3
x
=1$$ is given by
Report Question
0%
{
n
π
4
,
n
ϵ
I
}
0%
{
n
π
,
n
ϵ
I
}
0%
{
n
π
2
,
n
ϵ
I
}
0%
n
o
n
e
o
f
t
h
e
s
e
Explanation
According to question,
sin
2
x
+
cos
2
3
x
=
1
⟹
c
o
s
2
3
x
=
1
−
sin
2
x
⟹
cos
2
3
x
=
cos
2
x
Solving through trigonometric eq,
3
x
=
2
n
π
+
x
⟹
2
x
=
2
n
π
=>
x
=
n
π
,
n
ϵ
I
The no of solution of the equation:
1
+
sin
x
cos
x
=
2
sin
x
cos
x
in
x
,
[
0
,
40
]
are
Report Question
0%
4
0%
5
0%
7
0%
N
o
n
e
o
f
t
h
e
s
e
Explanation
1
+
s
i
n
x
c
o
s
x
=
2
s
i
n
x
c
o
s
x
x
ϵ
[
0
,
40
]
1
=
2
2
s
i
n
x
c
o
s
x
[
∵
2
s
i
n
x
c
o
s
x
−
s
i
n
2
x
]
2
=
s
i
n
2
x
.
2
x
=
1
2
s
i
n
−
1
(
2
)
x
=
1
2
s
i
n
−
1
(
2
)
If
sin
x
s
i
n
(
60
O
+
x
)
.
(
60
O
−
x
)
=
1
8
then
x
=
Report Question
0%
π
+
(
−
1
)
α
π
6
0%
π
3
+
(
−
1
)
α
π
18
0%
n
π
(
−
1
)
α
π
3
0%
n
π
3
+
(
−
1
)
α
π
9
Explanation
Given
sin
x
sin
(
60
∘
+
x
)
sin
(
60
∘
−
x
)
=
1
8
sin
x
(
sin
2
60
∘
−
sin
2
x
)
(
sin
(
A
+
B
)
sin
(
A
−
B
)
=
sin
2
A
−
sin
2
B
)
sin
x
(
3
4
−
sin
2
x
)
=
1
8
(
3
sin
x
−
4
sin
3
x
4
)
=
1
8
sin
3
x
=
1
2
(
sin
3
x
=
3
sin
x
−
4
sin
3
x
)
⟹
3
x
=
n
π
+
(
−
1
)
n
π
6
⟹
x
=
n
π
3
+
(
−
1
)
n
π
18
Find number of solutions to the equation:
[
sin
x
+
cos
x
]
=
3
+
[
−
sin
x
]
+
[
−
cos
x
]
Report Question
0%
0
0%
1
0%
2
0%
infinite
The number of solutions of the equation
|
cot
x
|
=
cot
x
+
1
sin
x
(
0
≤
x
≤
2
π
)
is :
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
(
cot
x
)
=
cot
x
+
1
sin
x
0
≤
x
≤
2
π
0
π
≤
x
<
3
π
2
and
0
≤
x
≤
π
2
cot
x
=
cot
x
+
1
sin
x
sin
x
=
0
x
=
0
2
cot
x
=
1
sin
x
2
sin
x
cos
x
=
1
sin
x
sin
x
=
1
⇒
x
=
π
2
0
cos
x
=
1
2
x
=
π
3
If
cos
3
x
=
−
1
, where
0
o
≥
x
≥
360
o
, then
x
Report Question
0%
60
o
,
180
o
,
300
o
0%
180
o
0%
60
o
,
180
o
0%
180
o
,
300
o
Explanation
Given
cos
3
x
=
−
1
⟹
3
x
=
2
n
π
±
π
=
(
2
n
±
1
)
π
where
n
is an integer
⟹
x
=
(
2
n
±
1
)
π
3
⟹
x
=
(
2
n
±
1
)
60
∘
=
±
60
∘
,
±
180
∘
,
±
300
∘
,
±
420
∘
,
⋯
As
0
∘
≤
x
≤
360
∘
,
x
=
60
∘
,
180
∘
,
300
∘
If
θ
is an acute angle such that
sec
2
θ
=
3
. then the value of
tan
2
θ
−
cosec
2
θ
tan
2
θ
−
cosec
2
θ
is
Report Question
0%
4
7
0%
3
7
0%
1
0%
1
7
Explanation
Given
sec
2
θ
=
3
for any value of
θ
,
tan
2
θ
−
cosec
2
θ
tan
2
θ
−
cosec
2
θ
=
1
(
∵
the numerator and denominator is same
)
If
3
sec
θ
+
2
sec
π
4
=
2
cos
θ
, where
θ
∈
(
0
,
2
π
)
, then which of the following can be correct?
Report Question
0%
cos
2
θ
=
0
0%
sin
2
θ
=
1
0%
tan
θ
=
1
0%
tan
θ
=
−
1
Explanation
3
sec
θ
+
2
sec
π
4
=
2
cos
θ
⇒
3
cos
θ
+
2
√
2
=
2
cos
θ
⇒
3
+
2
√
2
cos
θ
cos
θ
=
2
cos
θ
⇒
3
+
2
√
2
cos
θ
=
2
c
o
s
2
θ
⇒
2
cos
2
θ
−
2
√
2
cos
θ
−
3
=
0
cos
θ
=
2
√
2
±
√
(
2
√
2
)
2
−
4
(
3
)
(
2
)
4
=
2
√
2
±
4
√
2
4
=
√
2
±
2
√
2
2
=
3
√
2
2
,
−
1
√
2
sin
c
e
1
≤
cos
θ
≤
−
1
H
e
n
c
e
cos
θ
=
−
1
√
2
θ
=
π
4
,
7
π
4
∵
θ
∈
(
0
,
2
π
)
a
)
cos
2
θ
=
1
cos
(
2
π
4
)
=
cos
(
π
2
)
=
0
b
)
s
i
n
2
θ
=
1
sin
(
2
π
4
)
=
sin
(
π
2
)
=
1
c
)
tan
θ
=
1
tan
(
π
4
)
=
1
d
)
tan
θ
=
−
1
tan
(
7
π
4
)
=
tan
(
2
π
−
π
4
)
=
−
tan
(
π
4
)
=
−
1
For
x
∈
(
0
,
π
)
, the equation
sin
x
+
2
sin
2
x
−
sin
3
x
=
3
has
Report Question
0%
infinitely solutions
0%
three solution
0%
one solution
0%
no solution
Explanation
sin
x
+
2
sin
2
x
−
sin
3
x
=
3
sin
x
+
4
sin
x
cos
x
=
3
+
sin
3
x
sin
x
(
1
+
4
cos
x
)
=
3
+
sin
3
x
sin
x
(
1
+
4
cos
x
)
=
3
+
sin
x
(
3
−
4
sin
2
x
)
sin
x
(
4
cos
2
x
−
4
cos
x
−
2
)
=
−
2
4
cos
2
x
−
4
cos
x
−
2
=
9
(
2
cos
x
−
1
)
2
−
3
≥
−
3
and on
(
0
,
π
)
we have
0
<
sin
x
≤
1
they
The
L
H
S
of your last equation. should be
≥
−
3
on
(
0
,
π
)
No Solution in
(
0
,
π
)
The number of value of
x
∈
(
0
,
2
π
)
satisfying
log
tan
x
(
2
+
4
cos
2
x
)
=
2
Report Question
0%
π
4
0%
π
2
0%
π
3
0%
π
6
The sum
s
=
s
i
n
θ
+
s
i
n
2
θ
+
.
.
.
.
.
.
.
+
s
i
n
n
θ
, equals
Report Question
0%
s
i
n
1
2
(
n
+
1
)
θ
s
i
n
1
2
n
θ
/
s
i
n
θ
2
0%
c
o
s
1
2
(
n
+
1
)
θ
s
i
n
1
2
n
θ
/
s
i
n
θ
2
0%
s
i
n
1
2
(
n
+
1
)
θ
s
i
n
1
2
n
θ
/
c
o
s
θ
2
0%
c
o
s
1
2
(
n
+
1
)
θ
s
i
n
1
2
n
θ
/
c
o
s
θ
2
If
(
1
+
tan
A
)
.
(
1
+
tan
B
)
=
2
, then
A
+
B
is
Report Question
0%
π
2
0%
π
3
0%
π
4
0%
π
6
Explanation
(
1
+
tan
A
)
(
1
+
tan
B
)
=
2
∴
tan
(
A
+
B
)
=
tan
A
+
tan
B
1
−
tan
A
tan
B
...........
(
1
)
Now
1
+
tan
A
+
tan
B
+
tan
A
tan
B
=
2
∴
tan
A
+
tan
B
=
1
−
tan
A
tan
B
∴
tan
A
+
tan
B
1
−
tan
A
tan
B
=
1
........
(
2
)
∴
From
(
1
)
&
(
2
)
tan
(
A
+
B
)
=
1
∴
A
+
B
=
π
4
If
3
sin
2
θ
=
2
sin
3
θ
and
0
<
θ
<
π
, then value of
sin
θ
is
Report Question
0%
√
2
3
0%
`
√
3
√
5
0%
√
15
4
0%
√
2
√
5
Explanation
3
sin
2
θ
=
2
sin
3
θ
→
3
×
2
sin
cos
θ
=
2
(
3
sin
θ
−
4
sin
3
θ
)
→
6
sin
θ
cos
θ
=
6
sin
θ
−
8
sin
3
θ
→
sin
θ
(
6
cos
θ
−
6
+
8
sin
2
θ
)
=
0
∴
sin
θ
=
0
or
3
cos
θ
+
4
sin
2
θ
=
3
∴
sin
θ
=
0
or
3
cos
θ
+
4
(
1
−
cos
2
θ
)
=
3
∴
sin
θ
=
0
or
3
cos
θ
−
4
cos
2
θ
+
1
=
0
∴
4
cos
2
θ
−
3
cos
θ
−
1
=
0
∴
4
cos
2
θ
−
4
cos
θ
+
cos
θ
−
1
=
0
∴
4
cos
θ
(
cos
θ
−
1
)
+
1
(
cos
θ
−
1
)
=
0
∴
(
4
cos
θ
+
1
)
(
cos
θ
−
1
)
=
0
∴
cos
θ
=
−
1
4
or
cos
θ
=
1
∴
sin
θ
=
√
1
−
(
−
1
4
)
2
∴
sin
θ
=
√
1
−
1
16
∴
sin
θ
=
√
15
4
If
cos
2
x
+
2
cos
x
=
1
, then
sin
2
x
(
2
−
cos
2
x
)
is
Report Question
0%
1
0%
2
0%
4
0%
none of these
Explanation
Solution:- (A)
1
cos
2
x
+
2
cos
x
=
1
2
cos
2
x
−
1
+
2
cos
x
=
1
(
∵
cos
2
x
=
2
cos
2
x
−
1
)
⇒
2
cos
2
x
+
2
cos
x
−
2
=
0
⇒
cos
2
x
+
cos
x
=
1
.
.
.
.
.
(
1
)
⇒
1
−
cos
2
x
=
cos
x
⇒
sin
2
x
=
cos
x
.
.
.
.
.
(
2
)
Now,
sin
2
(
2
−
cos
2
x
)
=
sin
2
x
(
1
+
sin
2
x
)
=
cos
x
(
1
+
cos
x
)
[
From
(
2
)
]
=
cos
x
+
cos
2
x
=
1
[
From
(
1
)
]
Hence
sin
2
(
2
−
cos
2
x
)
=
1
.
State whether the following statement is true or false:
c
o
s
e
c
20
∘
sec
20
∘
=
Report Question
0%
2
0%
2
c
o
s
e
c
40
∘
0%
4
0%
2
sin
45
∘
.
c
o
s
e
c
40
∘
Explanation
c
s
c
20
sec
20
⟹
1
sin
20
cos
20
⟹
2
2
sin
20
cos
20
⟹
2
sin
2
(
20
)
⟹
2
sin
40
⟹
2
csc
40
c
o
s
2
2
x
+
2
c
o
s
2
x
=
1
,
x
ϵ
(
−
π
,
π
)
, then
x
can take the values
Report Question
0%
±
π
2
0%
±
π
4
0%
±
3
π
8
0%
Non of these
Explanation
Given
x
∈
(
−
π
,
π
)
⟹
2
x
∈
(
−
2
π
,
2
π
)
cos
2
2
x
+
2
cos
2
x
=
1
⟹
cos
2
2
x
+
2
cos
2
x
−
1
=
0
⟹
cos
2
2
x
+
(
2
cos
2
x
−
1
)
=
0
⟹
cos
2
2
x
+
cos
2
x
=
0
⟹
cos
2
x
(
cos
2
x
+
1
)
=
0
So
cos
2
x
=
0
or
−
1
⟹
2
x
=
±
π
2
,
±
3
π
2
or
±
π
⟹
x
=
±
π
4
,
±
3
π
4
or
±
π
2
The number of solutions to the equation
s
i
n
5
x
+
s
i
n
3
x
+
s
i
n
x
=
0
for
0
≤
x
≤
π
is
Report Question
0%
1
0%
2
0%
3
0%
None of these
Explanation
s
i
n
x
+
s
i
n
3
x
+
s
i
n
5
x
=
0
x
∈
[
0
,
π
]
(
s
i
n
x
+
s
i
n
5
x
)
+
s
i
n
3
x
=
0
2
s
i
n
3
x
c
o
s
2
x
+
s
i
n
3
x
=
0
[
∵
s
i
n
x
+
s
i
n
y
=
2
|
s
i
n
x
+
y
2
|
|
c
o
s
x
−
y
2
|
]
s
i
n
3
x
(
2
c
o
s
2
x
+
1
)
=
0
⇒
s
i
n
3
x
=
0
,
2
c
o
s
2
x
+
1
=
0
3
x
=
n
π
|
,
c
o
s
2
x
=
−
1
2
x
=
n
π
3
|
2
x
=
2
n
π
±
2
π
3
[
∵
c
o
s
2
2
π
3
=
−
1
2
]
|
x
=
n
π
±
π
3
For
x
∈
[
0
,
π
]
,
x
=
0
,
π
3
,
2
π
3
,
π
[ 4 solutions]
∴
None of these is correct option
State true or false.
(
cos
x
+
cosy
)
2
+
(
sin
x
−
sin
y
)
2
=
4
cos
2
(
x
+
y
2
)
Report Question
0%
True
0%
False
Explanation
(
cos
x
+
cos
y
)
2
+
(
sin
x
−
sin
y
)
2
=
[
cos
(
x
+
y
2
)
cos
(
x
−
y
2
)
]
2
+
[
2
cos
(
x
+
y
2
)
sin
(
x
−
y
2
)
]
2
=
[
(
2
)
2
cos
2
(
x
+
y
2
)
cos
2
(
x
−
y
2
)
]
+
[
(
2
)
2
cos
2
(
x
+
y
2
)
sin
2
(
x
−
y
2
)
]
=
4
cos
2
(
x
+
y
2
)
.
cos
2
(
x
−
y
2
)
+
4
cos
2
(
x
+
y
2
)
sin
2
(
x
−
y
2
)
=
4
cos
2
(
x
+
y
2
)
[
cos
2
(
x
−
y
2
)
+
sin
2
(
x
−
y
2
)
]
[
sin
2
θ
+
cos
2
θ
=
1
]
=
4
cos
2
(
x
+
y
2
)
×
1
=
4
cos
2
(
x
+
y
2
)
=
R
.
H
.
S
∴
(
cos
x
+
cos
y
)
2
+
(
sin
x
−
sin
y
)
2
=
4
cos
2
(
x
+
y
2
)
If
cos
2
x
=
sin
x
, then the value of
cos
2
x
(
1
+
cos
2
x
)
is equal to
Report Question
0%
−
1
0%
1
0%
0
0%
1
2
Explanation
Given
cos
2
x
=
sin
x
Squaring on both sides
⟹
(
cos
2
x
)
2
=
sin
2
x
⟹
cos
4
x
=
1
−
cos
2
x
⟹
cos
4
x
+
cos
2
x
=
1
⟹
cos
2
x
(
1
+
cos
2
x
)
=
1
sec
8
A
−
1
sec
4
A
−
1
=
Report Question
0%
tan
2
A
tan
8
A
0%
tan
8
A
tan
2
A
0%
cot8A
cot
2
A
0%
tan6A
tan
2
A
Explanation
Solution :-
s
e
c
8
A
−
1
s
e
c
4
A
−
1
=
1
/
c
o
s
8
A
−
1
1
/
c
o
s
4
A
−
1
⇒
1
−
c
o
s
8
A
c
o
s
8
A
1
−
c
o
s
4
A
c
o
s
4
A
=
c
o
s
4
A
(
1
−
c
o
s
8
A
)
c
o
s
8
A
(
1
−
c
o
s
4
A
)
⇒
c
o
s
4
A
(
1
−
(
1
−
2
s
i
n
2
4
A
)
)
c
o
s
8
A
(
1
−
(
1
−
2
s
i
n
2
2
A
)
)
=
c
o
s
4
A
.
s
i
n
2
2
A
c
o
s
8
A
.
s
i
n
2
2
A
⇒
(
2
c
o
s
4
A
s
i
n
4
A
)
s
i
n
4
A
(
2
c
o
s
8
A
s
i
n
2
2
A
)
=
s
i
n
8
A
s
i
n
4
A
2
c
o
s
8
A
.
s
i
n
2
2
A
⇒
t
a
n
8
A
(
s
i
n
4
A
2
s
i
n
2
A
)
=
t
a
n
8
A
.
(
2
s
i
n
2
A
.
c
o
s
2
A
2
s
i
n
2
2
A
)
⇒
t
a
n
8
A
t
a
n
2
A
If
tan
θ
+
cot
θ
=
4
, then the value of
tan
3
θ
+
cot
3
θ
is
Report Question
0%
52
0%
16
0%
7
9
8
0%
27
1
27
Explanation
tan
θ
+
cot
θ
=
4
(
tan
θ
+
cot
θ
)
3
=
4
3
tan
3
θ
+
cot
3
θ
+
(
tan
θ
+
cot
θ
)
3
tan
θ
cot
θ
=
64
tan
3
θ
+
cot
3
θ
+
(
4
)
3
=
64
tan
3
θ
+
cot
3
θ
=
64
−
12
tan
3
θ
+
cot
3
θ
=
52
The positive integer value of
n
>
3
satisfing the equation
1
sin
(
π
n
)
=
1
sin
(
2
π
n
)
+
1
sin
(
3
π
n
)
is
Report Question
0%
7
0%
8
0%
9
0%
10
If
c
o
t
Θ
=
s
i
n
2
Θ
(
w
h
e
r
e
Θ
≠
n
π
,
n
i
s
a
n
i
n
t
e
g
e
r
)
Θ
=
Report Question
0%
45
0
and 60
0
0%
45
0
and 90
0
0%
only 45
0
0%
only 90
0
Explanation
cot
θ
=
sin
2
θ
⇒
cos
θ
sin
θ
=
2
sin
θ
cos
θ
⇒
cos
θ
=
2
sin
2
θ
cos
θ
⇒
cos
θ
−
2
sin
2
θ
cos
θ
=
0
⇒
cos
θ
(
1
−
2
sin
2
θ
)
=
0
⇒
cos
θ
(
cos
2
θ
)
=
0
⇒
cos
θ
=
0
or
cos
2
θ
=
0
⇒
θ
=
π
2
or
2
θ
=
π
2
⇒
θ
=
π
4
∴
θ
can be
45
o
or
90
o
.
(
sec
A
−
cos
A
)
(
sec
A
+
cos
A
)
=
sin
2
A
+
tan
2
A
.
Report Question
0%
True
0%
False
Explanation
(
sec
A
−
cos
A
)
(
sec
A
+
cos
A
)
=
sec
2
A
−
cos
2
A
=
1
+
tan
2
A
−
cos
2
A
=
1
−
cos
2
A
+
tan
2
A
=
sin
2
A
+
tan
2
A
In a triangle ABC,
b
c
o
s
(
C
+
θ
)
+
c
c
o
s
(
B
−
θ
)
=
Report Question
0%
a
c
o
s
θ
0%
a
s
i
n
θ
0%
a
t
a
n
θ
0%
a
c
o
t
θ
Explanation
In
△
A
B
C
,
A
+
B
+
C
=
π
and
a
=
2
R
sin
A
,
b
=
2
R
sin
B
,
c
=
2
R
sin
C
b
cos
(
C
+
θ
)
+
c
cos
(
B
−
θ
)
=
R
(
2
sin
B
cos
(
C
+
θ
)
+
2
sin
C
cos
(
B
−
θ
)
)
=
R
(
sin
(
B
+
C
+
θ
)
+
sin
(
B
−
C
−
θ
)
+
sin
(
B
+
C
−
θ
)
+
sin
(
C
−
B
+
θ
)
)
=
R
(
sin
(
π
−
(
A
−
θ
)
)
+
sin
(
π
−
(
A
+
θ
)
)
+
sin
(
B
−
C
−
θ
)
−
sin
(
B
−
C
−
θ
)
)
=
R
(
sin
(
A
−
θ
)
+
sin
(
A
+
θ
)
)
=
R
(
2
sin
A
cos
θ
)
=
(
2
R
sin
A
)
cos
θ
=
a
cos
θ
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page