CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 11 - MCQExams.com

If $$\cos\ \theta+\sin\ \theta=a$$, then $$\sin\ 2\theta=$$
  • $$a^{2}+1$$
  • $$a^{2}-1$$
  • $$a^{2}$$
  • $$1$$
If $$\sin^{2} x- \cos x=1/4$$, then the value of $$x$$ between $$0$$ and $$2\pi$$ are :
  • $$\pi /3, 5\pi /3$$
  • $$\pi /3, -\pi/3$$
  • $$2 \pi/3, \pi/3$$
  • $$None\ of\ these$$
$$\dfrac{1+cot\alpha+cosec\alpha}{1-cot\alpha+cosec \alpha}=$$
  • $$\dfrac{sin\alpha}{1+cos\alpha}$$
  • $$\dfrac{sin\alpha}{1-cos\alpha}$$
  • $$\dfrac{1+cos\alpha}{sin\alpha}$$
  • $$\dfrac{1-sin\alpha}{cos\alpha}$$
If $$\sin ^ { - 1 } x = y ,$$ then
  • $$0 \leq y \leq \pi$$
  • $$- \frac { \pi } { 2 } \leq y \leq \frac { \pi } { 2 }$$
  • $$0 < y < \pi$$
  • $$- \frac { \pi } { 2 } < y < \frac { \pi } { 2 }$$
The equation $$\sin x + \sin y + \sin z = -3$$ for $$0 \le x \le 2\pi, 0 \le y \le 2\pi, 0 \le z \le 2\pi$$, has
  • One solution
  • Two sets of solutions
  • Four sets of solutions
  • No solution
The general solution to the equation $$\sin 3\alpha = 4\sin \alpha \sin(x + \alpha) \sin(x - \alpha)$$ is.
  • $$n\pi \pm \dfrac{\pi}{4}, \forall n \in I$$
  • $$n\pi \pm \dfrac{\pi}{3}, \forall n \in I$$
  • $$n\pi \pm \dfrac{\pi}{9}, \forall n \in I$$
  • $$n\pi \pm \dfrac{\pi}{12}, \forall n \in I$$
Number of solutions of the equation $$4\sin^{2}x+\tan^{2}x+\cot^{2}x+\csc^{2}=6$$ in $$[0, \pi]$$ is 
  • $$2$$
  • $$8$$
  • $$0$$
  • $$4$$
Solution of $$7 \sin ^ { 2 } x + 3 \cos ^ { 2 } x = 4$$ is
  • $$n \pi \pm \frac { \pi } { 2 }$$
  • $$n \pi \pm \frac { \pi } { 4 }$$
  • $$n \pi \pm \frac { \pi } {3 }$$
  • $$n \pi \pm \frac { \pi } { 6 }$$
Genral solution of the equation $$\theta -cosec\theta =\dfrac { 4 }{ 3 }$$ is :
  • $$\frac { 1 }{ 2 } \left( \left[ n\pi +{ \left( -1 \right) }^{ n }{ sin }^{ -1 }\left( 3/4 \right) \right] \right) n\epsilon Z$$
  • $$n\pi +{ \left( -1 \right) }^{ n }{ sin }^{ -1 }\left( 3/4 \right) n\epsilon Z$$
  • $$\frac { n\pi }{ 2 } +{ \left( -1 \right) }^{ n }{ sin }^{ -1 }\left( 3/4 \right) n\epsilon Z$$
  • none of these
If $$\sin \alpha = a \sin \beta$$ and $$\cos \alpha = b \cos \beta$$ then $$\tan \alpha =$$
  • $$\pm \sqrt { \left( \frac { a ^ { 2 } b ^ { 2 } - a ^ { 2 } } { b ^ { 2 } - a ^ { 2 } b ^ { 2 } } \right) }$$
  • $$\pm \sqrt { \left( \frac { a ^ { 2 } - a ^ { 2 } b ^ { 2 } } { b ^ { 2 } +a ^ { 2 } b ^ { 2 } } \right) }$$
  • $$\pm \sqrt { \left( \frac { 1 - a ^ { 2 } } { 1 - b ^ { 2 } } \right) }$$
  • $$\pm \sqrt { \left( \frac { 1 + a ^ { 2 } } { 1 + b ^ { 2 } } \right. ) } $$
If $$x = \tan \theta + \cot \theta, y = \cos \theta - \sin \theta$$, then
  • $$x = y$$
  • $$\dfrac {1-y^2}{2} = \dfrac{1}{x}$$
  • $$\dfrac {y^2-1}{2} = \dfrac{1}{x}$$
  • $$\dfrac {1+y^2}{2} = \dfrac{1}{x}$$
If $$\cosh x=\sec \theta$$, then $$\coth^{2}(x/2)=$$
  • $$\tan^{2}(\theta/2)$$
  • $$\tan^{2}\theta$$
  • $$\cot^{2}(\theta/2)$$
  • $$\cot^{2}\theta$$
Choose the correct answer the following:
2) The principle solution of $$\sec{x}+2=0$$ is____
  • $$\dfrac{4\pi}{3}$$
  • $$-\dfrac{4\pi}{3}$$
  • $$\dfrac{2\pi}{3}$$
  • $$-\dfrac{2\pi}{3}$$
One of principal solution of $$\sqrt 3 \sec x =  - 2$$ is equal to
  • $$5\dfrac{\pi }{6}$$
  • $$5\dfrac{\pi }{3}$$
  • $$5\dfrac{\pi }{4}$$
  • none
if $$\sqrt{2} cos \theta$$ = $$\sqrt { \dfrac { 2+\sqrt { 2+\sqrt { 2 }  }  }{ 2 }  }$$ then the value of $$\theta$$ is 
  • $$\dfrac{\pi}{16}$$
  • $$\dfrac{\pi}{32}$$
  • $$\dfrac{\pi}{64}$$
  • $$\dfrac{\pi}{128}$$
If $$sin A=\dfrac{3}{5},\tan B=\dfrac{1}{2}$$ and $$\dfrac{\pi}{2}<A<\pi<B<\dfrac{3\pi}{2}$$, then the value of $$8\tan A-\sqrt{5}sec B=$$
  • $$5/2$$
  • $$-5/2$$
  • $$-7/2$$
  • $$7/2$$
$$cos (4 \pi + \theta)$$ = ...
  • $$sin \theta$$
  • $$cos \theta$$
  • $$- sin \theta$$
  • $$-cos \theta$$
If $$4\cos{\theta}-3\sec{\theta}=2\tan{\theta}$$, then $${\theta}$$ is equal to
  • $$n\pi+(-1)^{n}\dfrac{\pi}{10}$$
  • $$n\pi+(-1)^{n}\dfrac{\pi}{6}$$
  • $$n\pi+(-1)^{n}\dfrac{3\pi}{10}$$
  • $$n\pi$$
The value(s) of $$\theta $$, which satisfy $$3-2cos\theta-4sin\theta -cos2\theta +sin2\theta =0$$ is/are
  • $$\theta =2n\pi ;n\in 1$$
  • $$2n\pi +\dfrac { \pi }{ 2 } ;n\in 1$$
  • $$2n\pi -\dfrac { \pi }{ 2 } ;n\in 1$$
  • $$n\pi ;n\in 1$$
Consider the operator a = X + $$\dfrac{d}{dx}$$ acting on smooth function of x. The commutator [a, cos x] is
  • (A) - sin x
  • (B) cos x
  • (C) -cos x
  • 0
The value of the expression  $$\dfrac { 1 - 4 \sin 10 ^ { \circ } \sin 70 ^ { \circ } } { 2 \sin 10 ^ { \circ } }$$  is
  • $$\dfrac { 1 } { 2 }$$
  • $$1$$
  • $$2$$
  • None if these
Number of solutions to the equation $$2 ^ { \sin ^ { 2 } x } + 5.2 ^ { \cos ^ { 2 } x } = 7 ,$$ in the interval $$[ - \pi , \pi ] ,$$ is
  • $$2$$
  • $$4$$
  • $$6$$
  • none of these
If $$5\left({\tan}^{2}x-{\cos}^{2}x\right)=2\cos2x+9$$, then the value of $$\cos4x$$ is:
  • $$-\dfrac{3}{5}$$
  • $$\dfrac{1}{3}$$
  • $$\dfrac{2}{9}$$
  • $$-\dfrac{7}{9}$$
$$\tan^4 \theta + \tan^2 \theta = \sec^4 \theta -\sec^2 \theta$$
  • True
  • False
$$\left(\dfrac {1+\tan^{2}A}{1+\cot^{2}A}\right)=\left(\dfrac {1-\tan^{2}A}{1-\cot^{2}A}\right)^{2}=\tan^{2}A$$
  • True
  • False
State whether the following statement is true or false
$$\sin^{2}\theta .\cos \theta +\tan \theta \sin \theta +\cos^{3}\theta =\sec \theta$$
  • True
  • False
 $$(\sin \theta +\cos \theta)^{2}+(\sin \theta -\cos \theta)^{2}=2$$
  • True
  • False
$$\sin A(1+\tan A)+\cos A(1+\cot A)=\sec A+\csc A$$.
  • True
  • False
 $$\dfrac {\sec A-\tan A}{\sec A+\tan A}=1-2\sec A\tan A+2\tan^{2}A$$.
  • True
  • False
State true or false.
$$\sec^{4}\theta-\tan^{4}\theta=1+2\tan^{2}\theta$$.
  • True
  • False
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers