Explanation
$${\textbf{Step - 1: Deduce and simplify value of x.}}$$
$${\text{Given x}} = {\text{tan}}\theta + {\text{cot}}\theta .$$
$$ \Rightarrow {\text{x}} = \dfrac{{{\text{sin}}\theta }}{{{\text{cos}}\theta }} + \dfrac{{{\text{cos}}\theta }}{{{\text{sin}}\theta }}.$$
$$ \Rightarrow {\text{x}} = \dfrac{{{\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta }}{{{\text{sin}}\theta {\text{cos}}\theta }}.$$
$$ \Rightarrow {\text{x}} = \dfrac{1}{{{\text{sin}}\theta {\text{cos}}\theta }}{\text{ - - - - - - - (i)}}$$
$${\textbf{Step - 2: Simplify value of y}}{\text{.}}$$
$${\text{Given y}} = {\text{cos}}\theta - {\text{sin}}\theta .$$
$${\text{so , }}\dfrac{{1 - {y^2}}}{2} = \dfrac{{1 - {{\left( {{\text{cos}}\theta - {\text{sin}}\theta } \right)}^2}}}{2}.$$
$$ \Rightarrow \dfrac{{1 - {y^2}}}{2} = \dfrac{{1 - {\text{co}}{{\text{s}}^2}\theta - {\text{si}}{{\text{n}}^2}\theta + 2{\text{sin}}\theta {\text{cos}}\theta }}{2}$$
$$ \Rightarrow \dfrac{{1 - {y^2}}}{2} = \dfrac{{1 - \left( {{\text{si}}{{\text{n}}^2}\theta + {\text{co}}{{\text{s}}^2}\theta } \right) + 2{\text{sin}}\theta {\text{cos}}\theta }}{2}$$
$$ \Rightarrow \dfrac{{1 - {y^2}}}{2} = \dfrac{{1 - 1 + 2{\text{sin}}\theta {\text{cos}}\theta }}{2}$$
$$ \Rightarrow \dfrac{{1 - {y^2}}}{2} = \dfrac{{{\text{2sin}}\theta {\text{cos}}\theta }}{2}$$
$$ \Rightarrow \dfrac{{1 - {y^2}}}{2} = {\text{sin}}\theta {\text{cos}}\theta $$
$$ \Rightarrow \dfrac{{1 - {y^2}}}{2} = \dfrac{1}{x}{\text{ }}\left[ {{\text{Put value of sin}}\theta c{\text{os}}\theta {\text{ from (i)}}} \right]$$
$${\textbf{So , as per given value of x and y they have a relation of }}\mathbf{\dfrac{{1 - {y^2}}}{2} = \dfrac{1}{x}(B)}.$$
Please disable the adBlock and continue. Thank you.