Explanation
Step - 1: Deduce and simplify value of x.
Given x=tanθ+cotθ.
⇒x=sinθcosθ+cosθsinθ.
⇒x=sin2θ+cos2θsinθcosθ.
⇒x=1sinθcosθ - - - - - - - (i)
Step - 2: Simplify value of y.
Given y=cosθ−sinθ.
so , 1−y22=1−(cosθ−sinθ)22.
⇒1−y22=1−cos2θ−sin2θ+2sinθcosθ2
⇒1−y22=1−(sin2θ+cos2θ)+2sinθcosθ2
⇒1−y22=1−1+2sinθcosθ2
⇒1−y22=2sinθcosθ2
⇒1−y22=sinθcosθ
⇒1−y22=1x [Put value of sinθcosθ from (i)]
So , as per given value of x and y they have a relation of 1−y22=1x(B).
Please disable the adBlock and continue. Thank you.