Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 12 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 12
cos
2
θ
(
1
+
tan
2
θ
)
=
1
Report Question
0%
True
0%
False
Explanation
As we know that
sec
2
A
−
tan
2
A
=
1
cos
2
θ
(
1
+
tan
2
θ
)
=
cos
2
θ
×
sec
2
θ
=
cos
2
θ
×
1
cos
2
θ
=
1
So the relation is
True
csc
6
θ
−
cot
6
θ
=
1
+
3
csc
2
θ
cot
2
θ
Report Question
0%
True
0%
False
Explanation
csc
6
θ
−
cot
6
θ
=
(
csc
2
θ
)
3
−
(
cot
2
θ
)
3
=
(
csc
2
θ
−
cot
2
θ
)
(
csc
4
θ
+
cot
4
θ
+
csc
2
θ
cot
2
θ
)
=
(
1
)
(
(
csc
2
θ
)
2
+
(
cot
2
θ
)
2
−
2
csc
2
θ
cot
2
θ
+
3
csc
2
θ
cot
2
θ
)
=
(
csc
2
−
cot
2
θ
)
2
+
3
csc
2
θ
cot
2
θ
=
1
+
3
csc
2
θ
cot
2
θ
So the relation is
True
If
x
=
a
cos
θ
+
b
sin
θ
and
y
=
a
sin
θ
−
b
cos
θ
, then
a
2
+
b
2
=
x
2
+
y
2
.
Report Question
0%
True
0%
False
Explanation
Given,
x
=
a
cos
θ
+
b
sin
θ
......(1) and
y
=
a
sin
θ
−
b
cos
θ
......(2).
Now squaring (1) and (2) and then adding we get,
x
2
+
y
2
=
a
2
(
cos
2
θ
+
sin
2
θ
)
+
2
a
b
sin
θ
.
cos
θ
−
2
a
b
sin
θ
.
cos
θ
+
b
2
(
sin
2
θ
+
cos
2
θ
)
or,
x
2
+
y
2
=
a
2
+
b
2
.
(
cos
A
−
csc
A
)
2
+
(
sin
A
−
sec
A
)
2
=
(
1
−
sec
A
.
csc
A
)
2
Report Question
0%
True
0%
False
Explanation
Given
(
cos
A
−
csc
A
)
2
+
(
sin
A
−
sec
A
)
2
=
(
1
−
sec
A
csc
A
)
2
Taking LHS
(
cos
A
−
csc
A
)
2
+
(
sin
A
−
sec
A
)
2
⟹
cos
2
A
+
csc
2
A
−
2
cos
A
csc
A
+
sin
2
A
−
2
sin
A
sec
A
+
sec
2
A
⟹
(
sin
2
A
+
cos
2
A
)
+
csc
2
A
+
sec
2
A
−
2
(
cos
A
sin
A
)
−
2
(
sin
A
cos
A
)
⟹
1
+
1
sin
2
A
+
1
cos
2
A
−
2
(
cos
2
A
+
sin
2
sin
A
cos
A
)
⟹
1
+
(
cos
2
A
+
sin
2
sin
2
A
cos
2
A
)
−
2
(
1
sin
A
cos
A
)
⟹
1
+
(
1
sin
2
A
cos
2
A
)
−
2
sec
A
csc
A
⟹
1
+
sec
2
A
csc
2
A
−
2
sec
A
csc
A
⟹
(
1
−
sec
A
csc
A
)
2
∴
LHS
=
RHS
Hence Proved.
If
sin
θ
+
sin
2
θ
+
sin
3
θ
=
1
, then
cos
6
θ
−
4
cos
4
θ
+
8
cos
2
θ
=
4
.
Report Question
0%
True
0%
False
Explanation
Given
sin
θ
+
sin
2
θ
+
sin
3
θ
=
1
⟹
sin
θ
(
1
+
sin
2
θ
)
=
1
−
sin
2
θ
⟹
sin
θ
(
2
−
cos
2
θ
)
=
cos
2
θ
Squaring on both sides
⟹
sin
2
θ
(
2
−
cos
2
θ
)
2
=
cos
4
θ
⟹
(
1
−
cos
2
θ
)
(
4
+
cos
4
θ
−
4
cos
2
θ
)
=
cos
4
θ
⟹
4
+
cos
4
θ
−
4
cos
2
θ
−
4
cos
2
θ
−
cos
6
θ
+
4
cos
4
θ
=
cos
4
θ
⟹
cos
6
θ
−
4
cos
4
θ
+
8
cos
2
θ
=
4
So the relation is
True
√
sec
A
−
1
sec
A
+
1
+
√
sec
A
+
1
sec
A
−
1
=
2
csc
A
Report Question
0%
True
0%
False
Explanation
Given
√
sec
A
−
1
sec
A
+
1
+
√
sec
A
+
1
sec
A
−
1
Mulitiplying and Diving first term by
sec
A
−
1
Mulitiplying and Diving second term by
sec
A
+
1
√
(
sec
A
−
1
)
2
(
sec
A
+
1
)
(
sec
A
−
1
)
+
√
(
sec
A
+
1
)
2
(
sec
A
−
1
)
(
sec
A
+
1
)
√
(
sec
A
−
1
)
2
(
sec
2
A
−
1
)
+
√
(
sec
A
+
1
)
2
(
sec
2
A
−
1
)
(
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
)
√
(
sec
A
−
1
tan
A
)
2
+
√
(
sec
A
+
1
tan
A
)
2
(
sec
2
A
−
1
=
tan
2
A
)
sec
A
−
1
tan
A
+
sec
A
+
1
tan
A
2
sec
A
tan
A
2
(
1
cos
A
)
(
sin
A
cos
A
)
2
sin
A
2
csc
A
State true or false.
tan
2
θ
sec
2
θ
+
cot
2
θ
c
o
s
e
c
2
θ
=
1
Report Question
0%
True
0%
False
Explanation
Given,
t
a
n
2
θ
s
e
c
2
θ
+
c
o
t
2
θ
c
s
c
2
θ
=
sin
2
θ
cos
2
θ
×
cos
2
θ
+
cos
2
θ
sin
2
θ
×
sin
2
θ
=
sin
2
θ
+
cos
2
θ
=
1
State whether the following statement is true or false.
sin
A
sec
A
+
tan
A
−
1
+
cos
A
cosec
A
+
cot
A
−
1
=
1
Report Question
0%
True
0%
False
Explanation
⇒
L
.
H
.
S
=
sin
A
sec
A
+
tan
A
−
1
+
c
o
t
A
c
o
s
e
c
A
+
cot
A
−
1
=
sin
A
1
cos
A
+
sin
A
cos
A
−
1
+
cos
A
1
sin
A
+
cos
A
sin
A
−
1
=
sin
A
1
+
sin
A
−
cos
A
cos
A
+
cos
A
1
+
cos
A
−
sin
A
sin
A
=
sin
A
×
cos
A
1
+
sin
A
−
cos
A
+
sin
A
×
cos
A
1
+
cos
A
−
sin
A
=
sin
A
cos
A
[
1
1
+
sin
A
−
cos
A
+
1
1
+
cos
A
−
sin
A
]
=
sin
A
cos
A
[
1
+
cos
A
−
sin
A
+
1
+
sin
A
−
cos
A
(
1
+
sin
A
−
cos
A
)
(
1
+
cos
A
−
sin
A
)
]
=
sin
A
cos
A
[
2
1
+
cos
A
−
sin
A
+
sin
A
+
sin
A
cos
A
−
sin
2
A
−
cos
A
−
cos
2
A
+
cos
A
sin
A
]
=
sin
A
cos
A
[
2
1
−
sin
2
A
−
cos
2
A
+
2
sin
A
cos
A
]
=
sin
A
cos
A
[
2
1
−
(
sin
2
A
+
cos
2
A
)
+
2
sin
A
cos
A
]
=
sin
A
cos
A
[
2
1
−
1
+
2
sin
A
cos
A
]
[ Since,
sin
2
θ
+
cos
2
θ
=
1
]
=
sin
A
cos
A
×
2
2
sin
A
cos
A
=
1
=
R
.
H
.
S
(
csc
A
−
sin
A
)
(
sec
A
−
cos
A
)
=
1
tan
A
+
cot
A
Report Question
0%
True
0%
False
Check whether following statement is true or false.
cos
4
θ
−
sin
4
θ
=
1
+
2
sin
2
θ
Report Question
0%
True
0%
False
State whether the following statement is true or false.
1
sec
A
+
tan
A
−
1
cos
A
=
1
cos
A
−
1
sec
A
−
tan
A
Report Question
0%
True
0%
False
Explanation
Consider
R
H
S
=
1
s
e
c
A
−
t
a
n
A
−
1
c
o
s
A
Multiplying by
s
e
c
A
+
t
a
n
A
in the numerator and denominator of
first term,
we get
s
e
c
A
+
t
a
n
A
(
s
e
c
A
+
t
a
n
A
)
(
s
e
c
A
−
t
a
n
A
)
−
1
c
o
s
A
=
s
e
c
A
+
t
a
n
A
−
s
e
c
A
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
(
S
i
n
c
e
,
s
e
c
²
A
−
t
a
n
²
A
=
1
)
=
t
a
n
A
Adding and subtracting
s
e
c
A
, we get
=
s
e
c
A
+
t
a
n
A
−
s
e
c
A
=
1
c
o
s
A
−
(
s
e
c
A
−
t
a
n
A
)
Now multiplying and dividing
(
s
e
c
A
−
t
a
n
A
)
by
(
s
e
c
A
+
t
a
n
A
)
,
we
get
=
1
c
o
s
A
−
(
s
e
c
²
A
−
t
a
n
²
A
)
(
s
e
c
A
+
t
a
n
A
)
=
1
c
o
s
A
−
1
s
e
c
A
+
t
a
n
A
= L.H.S
cos
θ
−
sin
θ
+
1
cos
θ
+
sin
θ
−
1
=
cosec
θ
+
cot
θ
Report Question
0%
True
0%
False
Explanation
Given
LHS
sin
θ
−
cos
θ
+
1
sin
θ
+
cos
θ
−
1
Dividing Numerator and Denominator by
sin
θ
⟹
cot
θ
+
cosec
θ
−
1
cot
θ
−
cosec
θ
+
1
⟹
cot
θ
+
cosec
θ
−
(
cosec
2
θ
−
cot
2
θ
)
cot
θ
−
cosec
θ
+
1
⟹
cot
θ
+
cosec
θ
−
(
cosec
θ
−
cot
θ
)
(
cosec
θ
+
cot
θ
)
cot
θ
−
cosec
θ
+
1
⟹
cot
θ
+
cosec
θ
−
(
cosec
θ
−
cot
θ
)
(
cosec
θ
+
cot
θ
)
cot
θ
−
cosec
θ
+
1
⟹
(
cot
θ
+
cosec
θ
)
(
cot
θ
−
cosec
θ
+
1
)
cot
θ
−
cosec
θ
+
1
⟹
cosec
θ
+
cot
θ
State whether the following statement is true or false.
cos
A
−
sin
A
+
1
cos
A
+
sin
A
−
1
=
cosec
A
+
cot
A
. (by using the identity
cosec
2
A
=
1
+
cot
2
A
.
)
Report Question
0%
True
0%
False
Explanation
L
H
S
=
(
c
o
s
A
−
s
i
n
A
)
+
1
(
c
o
s
A
+
s
i
n
A
)
−
1
taking conjugate
=
(
c
o
s
A
−
s
i
n
A
)
+
1
(
c
o
s
A
+
s
i
n
A
)
−
1
×
(
c
o
s
A
+
s
i
n
A
)
+
1
(
c
o
s
A
+
s
i
n
A
)
+
1
multiplying we get
=
c
o
s
2
A
−
s
i
n
2
A
+
2
c
o
s
A
+
1
2
s
i
n
A
c
o
s
A
=
c
o
s
2
A
−
s
i
n
2
A
+
2
c
o
s
A
+
s
i
n
2
A
+
c
o
s
2
A
2
s
i
n
A
c
o
s
A
on solving we get
=
2
c
o
s
2
A
+
2
c
o
s
A
2
s
i
n
A
c
o
s
A
taking
2
common and divided,
we get
=
c
o
s
A
+
c
o
s
2
A
s
i
n
A
c
o
s
A
we can also write in the form of
=
c
o
s
A
s
i
n
A
c
o
s
A
+
c
o
s
2
A
s
i
n
A
c
o
s
A
on solving we get
c
o
s
e
c
A
+
c
o
t
A
=
R
.
H
.
S
The value of
cos
2
θ
+
tan
2
θ
−
1
sin
2
θ
is
Report Question
0%
0
0%
cos
2
θ
0%
tan
2
θ
0%
1
sin
2
θ
Explanation
cos
2
θ
+
tan
2
θ
−
1
sin
2
θ
=
cos
2
θ
sin
2
θ
+
sin
2
θ
sin
2
θ
cos
2
θ
−
1
sin
2
θ
=
cot
2
θ
+
sec
2
θ
−
cosec
2
θ
=
sec
2
θ
−
(
cosec
2
θ
−
cot
2
θ
)
=
sec
2
θ
−
1
=
tan
2
θ
State whether the following statement is true or false.
cot
A
−
cos
A
cot
A
+
cos
A
=
cosec
A
−
1
cosec
A
+
1
Report Question
0%
True
0%
False
Explanation
L
H
S
=
(
c
o
t
A
−
c
o
s
A
)
(
c
o
t
A
+
c
o
s
A
)
=
(
c
o
s
A
s
i
n
A
−
c
o
s
A
)
(
c
o
s
A
s
i
n
A
+
c
o
s
A
)
=
c
o
s
A
(
1
s
i
n
A
−
1
)
c
o
s
A
(
1
/
s
i
n
A
+
1
)
=
(
1
s
i
n
A
−
1
)
(
1
s
i
n
A
+
1
)
=
(
c
o
s
e
c
A
−
1
)
(
c
o
s
e
c
A
+
1
)
..............[ since
1
/
s
i
n
A
=
c
o
s
e
c
A
]
=
R
H
S
State whether the following statement is true or false.
1
s
e
c
A
−
1
+
1
s
e
c
A
+
1
=
2
c
o
s
e
c
A
c
o
t
A
Report Question
0%
True
0%
False
Explanation
L
H
S
=
1
s
e
c
A
−
1
+
1
s
e
c
A
+
1
=
s
e
c
A
+
1
+
s
e
c
A
−
1
s
e
c
2
A
−
1
=
2
s
e
c
A
t
a
n
2
A
=
2
c
o
s
2
A
c
o
s
A
s
i
n
2
A
=
2
1
s
i
n
A
c
o
s
A
s
i
n
A
=
2
c
o
s
e
c
A
c
o
t
A
=
R
H
S
State whether the following statement is true or false.
sec
4
A
(
1
−
sec
4
A
)
−
2
tan
2
A
=
1
Report Question
0%
True
0%
False
Explanation
s
e
c
4
A
(
1
−
s
i
n
4
A
)
−
2
t
a
n
2
A
=
s
e
c
4
A
−
s
e
c
4
A
s
i
n
4
A
−
2
t
a
n
2
A
=
s
e
c
4
A
−
s
i
n
4
A
(
1
/
c
o
s
4
A
)
−
2
t
a
n
2
A
=
s
e
c
4
A
−
t
a
n
4
A
−
2
t
a
n
2
A
=
(
s
e
c
2
A
)
2
−
(
t
a
n
2
A
)
2
−
2
t
a
n
2
A
=
(
s
e
c
2
A
+
t
a
n
2
A
)
(
s
e
c
2
A
−
t
a
n
2
A
)
−
2
t
a
n
2
A
=
s
e
c
2
A
+
t
a
n
2
A
−
2
t
a
n
2
A
[
∵
s
e
c
2
A
−
t
a
n
2
A
=
1
]
=
s
e
c
2
A
−
t
a
n
2
A
=
1
State whether the following statement is true or false.
If
cos
A
+
cos
2
A
=
1
,
then
sin
2
A
+
sin
4
A
=
1.
Report Question
0%
True
0%
False
Explanation
Given:
c
o
s
A
+
c
o
s
2
A
=
1
⟹
c
o
s
A
=
1
−
c
o
s
2
A
=
s
i
n
2
A
..........[1]
Now,
s
i
n
2
A
+
s
i
n
4
A
=
c
o
s
A
+
c
o
s
2
A
=
1
.....................[from
1
]
If
c
o
s
e
c
θ
−
c
o
t
θ
=
p
, then
c
o
s
e
c
θ
+
c
o
t
θ
=
Report Question
0%
1/p
0%
-1/p
0%
-p
0%
p
2
Explanation
csc
θ
−
cot
θ
=
p
⇒
(
csc
θ
−
cot
θ
)
(
csc
θ
+
cot
θ
)
=
p
(
csc
θ
+
cot
θ
)
⇒
csc
2
θ
−
cot
2
θ
=
p
(
csc
θ
+
cot
θ
)
⇒
1
=
p
(
csc
θ
+
cot
θ
)
∴
csc
θ
+
cot
θ
=
1
p
State whether the following statement is true or false.
1
+
cos
θ
−
sin
2
θ
sin
θ
(
1
+
cos
θ
)
=
cot
θ
Report Question
0%
True
0%
False
Explanation
1
+
cos
θ
−
sin
2
θ
sin
θ
(
1
+
cos
θ
)
=
cot
θ
⇒
L
.
H
.
S
=
1
+
cos
θ
−
sin
2
θ
sin
θ
(
1
+
cos
θ
)
=
1
+
cos
θ
−
(
1
−
cos
2
θ
)
sin
θ
(
1
+
cos
θ
)
=
1
+
cos
θ
−
1
+
cos
2
θ
sin
θ
(
1
+
cos
θ
)
=
cos
θ
+
cos
2
θ
sin
θ
(
1
+
cos
θ
=
cos
θ
(
1
+
cos
θ
)
sin
θ
(
1
+
cos
θ
)
=
cos
θ
sin
θ
=
cot
θ
=
R
.
H
.
S
tan
θ
1
−
cot
θ
+
cot
θ
1
−
tan
θ
=
1
+
sec
θ
.
cosec
θ
Report Question
0%
True
0%
False
Explanation
tan
θ
1
−
cot
θ
+
cot
θ
1
−
tan
θ
=
sin
θ
cos
θ
1
−
cos
θ
sin
θ
+
cos
θ
sin
θ
1
−
sin
θ
cos
θ
=
sin
2
θ
cos
θ
(
sin
θ
−
cos
θ
)
−
cos
2
θ
sin
θ
(
sin
θ
−
cos
θ
)
=
1
sin
θ
−
cos
θ
(
sin
2
θ
cos
θ
−
cos
2
θ
sin
θ
)
=
sin
3
θ
−
cos
3
θ
(
sin
θ
−
cos
θ
)
sin
θ
cos
θ
=
(
sin
θ
−
cos
θ
)
(
sin
2
θ
+
cos
2
θ
+
sin
θ
cos
θ
)
(
sin
θ
−
cos
θ
)
sin
θ
cos
θ
(
∵
a
3
−
b
3
=
(
a
−
b
)
(
a
2
+
b
2
+
a
b
)
)
=
1
+
sin
θ
cos
θ
sin
θ
cos
θ
=
1
+
sec
θ
cosec
θ
So the relation is
True
The value of
sin
θ
is not equal to
Report Question
0%
±
1
2
0%
1
√
2
0%
±
1
3
0%
2
The maximum value of
2
sin
x
−
4
cos
x
is
Report Question
0%
−
√
12
0%
2
0%
√
20
0%
None of these
Explanation
Step – 1: Convert
2
sin
x
−
4
cos
x
into single sine function.
Let
f
(
x
)
=
2
sin
x
−
4
cos
x
Here,
a
=
2
and
b
=
−
4
∴
√
a
2
+
b
2
=
√
2
2
+
(
−
4
)
2
=
√
4
+
16
=
√
20
Divide
f
(
x
)
by
√
a
2
+
b
2
f
(
x
)
√
20
=
2
√
20
sin
x
−
4
√
20
cos
x
By using triangular method,
Let,
sin
θ
=
4
√
20
and
cos
θ
=
2
√
20
∴
f
(
x
)
√
20
=
cos
θ
sin
x
−
sin
θ
cos
x
⇒
f
(
x
)
√
20
=
sin
(
x
−
θ
)
[
∵
sin
(
a
−
b
)
=
sin
a
cos
b
−
cos
a
sin
b
]
⇒
f
(
x
)
=
√
20
sin
(
x
−
θ
)
Step – 2: Sine function lies in the range
[
−
1
,
1
]
−
1
≤
sin
(
x
−
θ
)
≤
1
⇒
−
√
20
≤
√
20
sin
(
x
−
θ
)
≤
√
20
Hence, the maximum value of
2
sin
x
−
4
cos
x
is equal to
√
20
.
The value of
sin
θ
is not equal to
Report Question
0%
±
1
2
0%
1
√
2
0%
±
1
3
0%
2
If
x
1
and
x
2
are two distinct roots of the equation
a
cos
x
+
b
sin
x
=
c
, then
tan
x
1
+
x
2
2
is equal to
Report Question
0%
a
/
b
0%
b
/
a
0%
c
/
a
0%
a
/
c
Explanation
a
cos
x
+
b
sin
x
=
c
1
−
tan
2
x
2
1
+
tan
2
x
2
+
b
2
tan
x
2
1
+
tan
2
x
2
=
c
(
c
+
a
)
tan
2
x
2
−
2
b
tan
x
2
+
(
c
−
a
)
=
0
Since,
x
1
and
x
2
are roots,
tan
x
1
2
+
tan
x
2
2
=
2
b
c
+
a
and
tan
x
1
2
.
tan
x
2
2
=
c
−
a
c
+
a
Hence,
tan
(
x
1
+
x
2
2
)
=
tan
x
1
2
+
tan
x
2
2
1
−
tan
x
1
2
tan
x
2
2
=
2
b
c
+
a
1
−
c
−
a
c
+
a
=
b
a
Hence, option (b) is correct.
1
−
sin
A
1
+
sin
A
=
(
sec
A
−
tan
A
)
2
Report Question
0%
True
0%
False
Explanation
L.H.S. :
1
−
sin
A
1
+
sin
A
=
(
1
−
sin
A
)
2
(
1
−
sin
A
)
(
1
+
sin
A
)
=
(
1
−
sin
A
)
2
1
−
sin
2
A
=
(
1
−
sin
A
)
2
cos
2
A
=
[
1
−
sin
A
cos
A
]
2
=
(
sec
A
−
tan
A
)
2
= R.H.S.
If
s
i
n
(
2
c
o
s
−
1
(
1
√
5
)
+
c
o
s
(
2
t
a
n
−
1
(
1
3
)
)
=
p
q
, where p & q are relatively prime then digit at units place of
(
p
−
q
)
2
k
+
1
,
k
ϵ
N
, can be ________.
Report Question
0%
1
0%
3
0%
7
0%
9
Given
A
=
s
i
n
2
θ
+
c
o
s
4
θ
, then for all real
θ
Report Question
0%
1
≤
A
≤
2
0%
3
4
≤
A
≤
1
0%
13
16
≤
A
≤
1
0%
3
4
≤
A
≤
13
16
The values of x in
(
0
,
π
2
)
satisfying the equation
sin
x
cos
x
=
1
4
are ________.
Report Question
0%
π
6
,
π
12
0%
π
12
,
5
π
12
0%
π
8
,
3
π
8
0%
π
8
,
π
4
Explanation
We know that,
sin
(
2
x
)
=
2
sin
x
cos
x
.
So, from
sin
x
cos
x
=
1
4
, we get that
sin
(
2
x
)
=
1
2
.
So, we have to find the solutions of the equation
sin
(
2
x
)
=
1
2
, where
x
∈
(
0
,
π
2
)
.
From this data, we get that
2
x
=
π
6
or
5
π
6
.
That is,
x
=
π
12
or
5
π
12
.
What is
cot
(
A
2
)
−
tan
(
A
2
)
equal to ?
Report Question
0%
tan
A
0%
cot
A
0%
2
tan
A
0%
2
cot
A
Explanation
cot
(
A
2
)
−
tan
(
A
2
)
⇒
cos
A
2
sin
A
2
−
sin
A
2
cos
A
2
⇒
cos
2
A
2
−
sin
2
A
2
sin
A
2
.
cos
A
2
⇒
cos
2
(
A
2
)
sin
A
2
.
cos
A
2
⇒
cos
A
sin
A
2
.
cos
A
2
⇒
2
cos
A
2
sin
A
2
.
cos
A
2
⇒
2
cos
A
sin
2
(
A
2
)
⇒
2
cos
A
sin
A
⇒
2
cot
A
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page