Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 12 - MCQExams.com

cos2θ(1+tan2θ)=1
  • True
  • False
 csc6θcot6θ=1+3csc2θcot2θ 
  • True
  • False
If x=acosθ+bsinθ and y=asinθbcosθ, then a2+b2=x2+y2.
  • True
  • False
(cosAcscA)2+(sinAsecA)2=(1secA.cscA)2
  • True
  • False
If sinθ+sin2θ+sin3θ=1, then cos6θ4cos4θ+8cos2θ=4.
  • True
  • False
secA1secA+1+secA+1secA1=2cscA
  • True
  • False
State true or false.
tan2θsec2θ+cot2θcosec2θ=1
  • True
  • False
State whether the following statement is true or false.
sinAsecA+tanA1+cosAcosecA+cotA1=1
  • True
  • False
(cscAsinA)(secAcosA)=1tanA+cotA 
  • True
  • False
Check whether following statement is true or false.
cos4θsin4θ=1+2sin2θ
  • True
  • False
State whether the following statement is true or false.
1secA+tanA1cosA=1cosA1secAtanA
  • True
  • False
\dfrac{\cos\theta-\sin \theta+1}{\cos\theta+\sin \theta-1}=\text{cosec} \theta+\cot \theta
  • True
  • False
State whether the following statement is true or false.
\dfrac { \cos A-\sin A+1 }{ \cos A+\sin A-1 }= \text{cosec} A+\cot A. (by using the identity \text{cosec}^{ 2 }A=1+{ \cot }^{ 2 }A.)\quad
  • True
  • False
The value of \dfrac{\cos^{2}\theta+\tan^{2}\theta\ -1}{\sin^{2}\theta} is
  • 0
  • \cos^{2}\theta
  • \tan^{2}\theta
  • \dfrac{1}{\sin^{2}\theta}
State whether the following statement is true or false.
\dfrac { \cot A-\cos A }{ \cot A+\cos A } =\dfrac { \text{cosec}A-1 }{ \text{cosec}A+1 }
  • True
  • False
State whether the following statement is true or false.
\dfrac{1}{secA-1}+\dfrac{1}{secA+1}=2cosecAcotA
  • True
  • False
State whether the following statement is true or false.
\sec { ^{ 4 } } A\left( 1-\sec { ^{ 4 } } A \right) -2\tan { ^{ 2 } } A=1
  • True
  • False
State whether the following statement is true or false.
If \cos A+{ \cos }^{ 2 }A=1, then { \sin }^{ 2 }A+{ \sin }^{ 4 }A=1.
  • True
  • False
If { cosec }\theta -cot\theta =p, then cosec\theta +cot\theta =

  • 1/p
  • -1/p
  • -p
  • { p }^{ 2 }
State whether the following statement is true or false.
\dfrac { 1+\cos\theta -\sin^{ 2 }\theta  }{ \sin { \theta \left( 1+\cos { \theta  }  \right)  }  } =\cot { \theta  }
  • True
  • False
\dfrac{{\tan\theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta .\text{cosec}\theta
  • True
  • False
The value of \sin \theta is not equal to
  • \pm \frac{1}{2}
  • \frac{1}{\sqrt 2}
  • \pm \frac{1}{3}
  • 2
The maximum value of 2 \sin x-4 \cos x is
  • -\sqrt { 12 }
  • 2
  • \sqrt { 20 }
  • None of these
The value of \sin\theta is not equal to
  • \pm\dfrac {1}{2}
  • \dfrac {1}{\sqrt {2}}
  • \pm\dfrac {1}{3}
  • 2
If x_{1} and x_{2} are two distinct roots of the equation a\cos x+b\sin x=c, then \tan\dfrac {x_{1}+x_{2}}{2} is equal to
  • a/b
  • b/a
  • c/a
  • a/c
\dfrac{1-\sin A}{1+\sin A}=(\sec A -\tan A)^2
  • True
  • False
If sin{(2cos^{-1}(\dfrac{1}{\sqrt{5}})} + cos{(2tan^{-1}(\dfrac{1}{3}))}=\dfrac{p}{q}, where p & q are relatively prime then digit at units place of {(p-q)}^{2k+1}, k\epsilon{N}, can be ________.
  • 1
  • 3
  • 7
  • 9
Given A={ sin }^{ 2 }\theta +{ cos }^{ 4 }\theta , then for all real \theta
  • 1\le A\le 2
  • \cfrac { 3 }{ 4 } \le A\le 1
  • \cfrac { 13 }{ 16 } \le A\le 1
  • \cfrac { 3 }{ 4 } \le A\le \cfrac { 13 }{ 16 }
The values of x in \left(0, \dfrac{\pi}{2}\right) satisfying the equation \sin x\cos x=\dfrac{1}{4} are ________.
  • \dfrac{\pi}{6}, \dfrac{\pi}{12}
  • \dfrac{\pi}{12}, \dfrac{5\pi}{12}
  • \dfrac{\pi}{8}, \dfrac{3\pi}{8}
  • \dfrac{\pi}{8}, \dfrac{\pi}{4}
What is \cot(\dfrac{A}{2})-\tan(\dfrac{A}{2}) equal to ?
  • \tan A
  • \cot A
  • 2\tan A
  • 2\cot A
0:0:2


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers