Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 13 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 13
The general solution of the equation
s
i
n
θ
=
1
√
2
is
Report Question
0%
θ
=
n
π
+
π
4
,
n
∈
l
0%
θ
=
2
n
π
+
π
4
,
n
∈
l
0%
θ
=
n
π
+
(
−
1
)
n
π
4
,
n
∈
l
0%
none of these.
Explanation
s
i
n
θ
=
1
√
2
=
s
i
n
π
4
⇒
θ
=
n
π
+
(
−
1
)
n
π
4
,
n
∈
l
.
The general solution of the equation
s
i
n
2
θ
=
s
i
n
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
s
i
n
2
θ
=
s
i
n
2
α
⇒
2
s
i
n
2
θ
=
2
s
i
n
2
α
⇒
(
1
−
c
o
s
2
θ
)
=
(
1
−
c
o
s
2
α
)
⇒
c
o
s
2
θ
=
c
o
s
2
α
.
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
t
a
n
2
θ
=
t
a
n
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
t
a
n
2
θ
=
t
a
n
2
α
⇒
1
−
t
a
n
2
θ
1
+
t
a
n
2
θ
=
1
−
t
a
n
2
α
1
+
t
a
n
2
α
⇒
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
t
a
n
θ
=
1
√
3
is
Report Question
0%
θ
=
n
π
+
π
6
,
n
∈
I
0%
θ
=
2
n
π
+
π
6
,
n
∈
I
0%
θ
=
2
n
π
±
π
6
,
n
∈
I
0%
none of these.
Explanation
t
a
n
θ
=
1
√
3
=
t
a
n
π
6
⇒
θ
=
n
π
+
π
6
,
n
∈
l
.
The general solution of the equation
t
a
n
θ
=
t
a
n
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
The general solution of the equation
c
o
s
2
θ
=
c
o
s
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
c
o
s
2
θ
=
2
c
o
s
2
α
(
1
+
c
o
s
2
θ
)
=
(
1
+
c
o
s
2
α
)
⇒
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
s
i
n
θ
=
−
√
3
2
is
Report Question
0%
θ
=
n
π
+
4
π
3
,
n
∈
I
0%
θ
=
2
n
π
+
4
π
3
,
n
∈
I
0%
θ
=
n
π
+
(
−
1
)
n
4
π
3
,
n
∈
I
0%
none of these.
Explanation
s
i
n
θ
=
√
3
2
=
−
s
i
n
π
3
=
s
i
n
(
π
+
π
3
)
=
s
i
n
4
π
3
∴
θ
=
n
π
+
(
−
1
)
n
4
π
3
,
n
∈
l
.
The angles of a triangle are in
A
P
and the ratio of the number of degrees in the least to the number of radius in the greatest is
60
:
π
. The smallest angle is
Report Question
0%
15
0
0%
30
0
0%
45
0
0%
60
0
Explanation
Let the angles be
(
a
−
d
)
0
,
a
0
and
(
a
+
d
)
0
. Then,
a
−
d
+
a
+
a
+
d
=
180
⇒
3
a
=
180
⇒
a
=
60
.
So, the angles are
(
60
−
d
)
0
,
60
0
and
(
60
+
d
)
0
.
180
0
=
π
c
⇒
(
60
+
d
)
0
=
{
π
180
×
(
60
+
d
)
}
c
=
{
(
60
+
d
)
π
180
}
c
∴
(
60
−
d
)
(
60
+
d
)
π
180
=
60
π
⇒
3
(
60
−
d
)
(
60
+
d
)
=
1
⇒
180
−
3
d
=
60
+
d
⇒
4
d
=
120
⇒
d
=
30
.
∴
the smallest angle =
(
60
−
30
)
0
=
30
0
.
The general solution of the equation
c
o
s
θ
=
1
2
is
Report Question
0%
θ
=
n
π
+
π
3
,
n
∈
I
0%
θ
=
2
n
π
+
π
3
,
n
∈
I
0%
θ
=
2
n
π
±
π
3
,
n
∈
I
0%
none of these.
Explanation
c
o
s
θ
=
1
2
=
c
o
s
π
3
⇒
θ
=
2
n
π
±
π
3
,
n
∈
l
.
The general solution of the equation
c
o
s
θ
=
c
o
s
α
is
Report Question
0%
θ
=
α
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
0%
none of these
The general solution of the equation
c
o
s
e
c
θ
+
√
2
=
0
is
Report Question
0%
θ
=
n
π
+
5
π
4
,
n
∈
I
0%
θ
=
n
π
−
5
π
4
,
n
∈
I
0%
θ
=
n
π
+
(
−
1
)
n
5
π
4
,
n
∈
I
0%
none of these.
Explanation
c
o
s
e
c
θ
=
−
√
2
⇒
s
i
n
θ
=
−
1
√
2
=
−
s
i
n
π
4
=
s
i
n
(
π
+
π
4
)
=
s
i
n
5
π
4
⇒
θ
=
n
π
+
(
−
1
)
n
.
5
π
4
,
n
∈
I
.
The general solution of the equation
4
s
i
n
2
θ
=
1
is
Report Question
0%
θ
=
n
π
±
π
6
,
n
∈
I
0%
θ
=
2
n
π
±
π
6
,
n
∈
I
0%
θ
=
n
π
4
+
π
24
,
n
∈
I
0%
none of these.
Explanation
4
s
i
n
2
θ
=
1
⇒
s
i
n
2
θ
=
1
4
=
(
1
2
)
2
=
s
i
n
2
π
6
⇒
x
=
n
π
±
π
6
,
n
∈
I
The general solution of the equation
c
o
t
θ
=
−
√
3
is
Report Question
0%
θ
=
n
π
+
5
π
6
,
n
∈
l
0%
θ
=
2
n
π
+
5
π
6
,
n
∈
l
0%
θ
=
n
π
+
2
π
3
,
n
∈
l
0%
none of these.
Explanation
c
o
t
θ
=
−
√
3
⇒
t
a
n
θ
=
−
1
√
3
=
−
t
a
n
π
6
=
t
a
n
(
π
−
π
6
)
=
t
a
n
5
π
6
⇒
θ
=
(
n
π
+
5
π
6
)
,
n
∈
l
.
The general solution of the equation
s
i
n
2
θ
=
−
1
2
is
Report Question
0%
θ
=
n
π
4
+
π
24
,
n
∈
I
0%
n
π
2
+
(
−
1
)
n
7
π
12
,
n
∈
N
0%
θ
=
n
π
4
±
π
24
,
n
∈
I
0%
none of these.
Explanation
s
i
n
2
θ
=
−
1
2
=
−
s
i
n
π
6
=
s
i
n
(
π
+
π
6
)
=
s
i
n
7
π
6
⇒
2
θ
=
n
x
+
(
−
1
)
n
.
7
π
6
,
n
∈
I
⇒
θ
=
n
π
2
+
(
−
1
)
n
7
π
12
,
n
∈
I
.
The general solution of the equation
2
c
o
s
2
θ
=
1
is
Report Question
0%
θ
=
2
n
π
±
π
4
,
n
∈
I
0%
θ
=
n
π
2
+
π
8
,
n
∈
I
0%
θ
=
n
π
±
π
4
,
n
∈
I
0%
none of these.
Explanation
2
c
o
s
2
θ
=
1
⇒
c
o
s
2
θ
=
1
2
=
(
1
√
2
)
2
=
c
o
s
2
π
4
∴
θ
=
n
π
±
π
4
,
n
∈
N
.
The general solution of the equation
c
o
t
2
θ
=
3
is
Report Question
0%
θ
=
n
π
+
π
6
,
n
∈
I
0%
θ
=
n
π
±
π
6
,
n
∈
I
0%
θ
=
2
n
π
+
π
6
,
n
∈
I
0%
none of these.
Explanation
c
o
t
2
θ
=
3
⇒
t
a
n
2
θ
=
1
3
=
(
1
√
3
)
2
=
t
a
n
2
π
6
⇒
θ
=
n
x
±
π
6
,
n
∈
I
.
The general solution of the equation
c
o
s
θ
=
−
1
2
is
Report Question
0%
θ
=
n
π
±
2
π
3
,
n
∈
I
0%
θ
=
2
n
π
+
π
3
,
n
∈
I
0%
θ
=
2
n
π
±
2
π
3
,
n
∈
I
0%
none of these.
Explanation
c
o
s
θ
=
−
1
2
=
−
c
o
s
π
3
=
c
o
s
(
π
−
p
i
3
)
=
c
o
s
2
π
3
∴
θ
=
(
2
n
π
±
2
π
3
)
,
n
∈
l
.
If
x
+
1
/
x
=
2
, the principal value of
s
i
n
−
1
x
is
Report Question
0%
π
/
4
0%
π
/
2
0%
π
0%
3
π
/
2
If
x
1
and
x
2
are two distinct roots of the equation
a
cos
x
+
b
sin
x
=
c
,
then
tan
x
1
+
x
2
2
is equal to
Report Question
0%
a
b
0%
b
a
0%
c
a
0%
a
c
Explanation
a
cos
x
+
b
sin
x
=
c
⇒
a
(
1
−
tan
2
x
2
)
1
+
tan
2
x
2
+
2
b
tan
x
2
1
+
tan
2
x
2
=
c
⇒
(
c
+
a
)
tan
2
x
2
−
2
b
tan
x
2
+
c
−
a
=
0
⇒
tan
x
1
2
+
tan
x
2
2
=
2
b
c
+
a
and
tan
x
1
2
tan
x
2
2
=
c
−
a
c
+
a
Using,
tan
(
x
1
+
x
2
2
)
=
tan
x
1
2
+
tan
x
2
2
1
−
tan
x
1
2
tan
x
2
2
⇒
tan
(
x
1
+
x
2
2
)
=
2
b
c
+
a
1
−
c
−
a
c
+
a
=
2
b
2
a
=
b
a
If
cosec
θ
−
cot
θ
=
q
, then the value of
cosec
θ
is
Report Question
0%
q
+
1
q
0%
q
−
1
q
0%
1
2
(
q
+
1
q
)
0%
none of these
Explanation
cosec
θ
−
cot
θ
=
q
cosec
2
θ
−
cot
2
θ
=
1
⇒
(
cosec
θ
−
cot
θ
)
(
cosec
θ
+
cot
θ
)
=
1
⇒
q
⋅
(
cosec
θ
+
cot
θ
)
=
1
∴
cosec
θ
+
cot
θ
=
1
q
∴
cosec
θ
=
1
2
[
q
+
(
1
/
q
)
]
(
on addition
)
The principal value of
c
o
s
−
1
(
c
o
s
2
π
3
)
+
s
i
n
−
1
(
s
i
n
2
π
3
)
is
Report Question
0%
π
0%
π
/
2
0%
π
/
3
0%
4
π
/
3
Evaluate :
t
a
n
[
2
t
a
n
−
1
1
5
−
π
4
]
Report Question
0%
5
4
0%
5
16
0%
−
7
17
0%
7
17
The value of
5
16
right angles in sexagesimal system is equal to
Report Question
0%
28
∘
30
′
7
″
0%
27
∘
5
′
26
″
0%
28
∘
7
′
30
″
0%
29
∘
3
′
27
″
The value of
3
π
4
in sexagesimal system is:
Report Question
0%
75
∘
0%
135
∘
0%
120
∘
0%
220
∘
1 radian is equal to:
Report Question
0%
180
∘
0%
200
∘
0%
100
∘
0%
None of these
Let
f
(
X
)
=
sin
(
π
cos
x
)
and
g
(
x
)
=
cos
(
2
π
sin
x
)
be two function defined for
x
>
0
. Define the following sets whose elements are written in increasing order
X
=
{
x
:
f
(
x
)
=
0
}
,
Y
=
{
x
:
f
′
(
x
)
=
0
}
Z
=
{
x
:
g
(
x
)
=
0
}
,
W
=
{
x
:
g
′
(
x
)
=
0
List I contains sets
X
,
Y
,
Z
and
W
List II contains some information regarding these set.
Which of the following is the only correct combination ?
Sr.No
List I
Sr.No
List II
(I)
X
(P)
⊇
{
π
2
,
3
π
2
,
4
π
,
7
π
}
(II)
Y
(Q)
an arithmetic progression
(III)
Z
(R)
NOT an arithmetic progression
(IV)
W
(S)
⊇
{
π
6
,
7
π
6
,
13
π
6
}
(T)
⊇
{
π
3
,
2
π
3
,
π
}
(U)
⊇
{
π
6
,
3
π
4
}
Report Question
0%
(I) (P) (R)
0%
(II) (Q) (T)
0%
(I) (Q) (U)
0%
(II) (R) (S)
Explanation
f
(
x
)
=
0
⇒
sin
(
π
cos
x
)
=
0
=
π
cos
x
=
n
π
⇒
cos
x
=
n
=
cos
x
=
−
1
,
0
,
1
⇒
X
=
{
n
π
,
(
2
n
+
1
)
π
2
}
=
{
n
π
2
,
n
∈
I
}
f
′
(
x
)
=
0
⇒
cos
(
π
cos
x
)
(
−
π
sin
x
)
=
0
π
cos
x
=
(
2
n
+
1
)
π
2
or
x
=
n
π
⇒
cos
x
=
n
+
1
2
or
x
=
n
π
⇒
cos
x
=
±
1
2
or
x
=
n
π
⇒
Y
=
{
.
.
.
.
.
−
2
π
3
,
π
3
,
0
,
π
3
,
2
π
3
,
π
,
4
π
3
,
.
.
.
.
.
}
which is an arithmetic progression
g
(
x
)
=
0
⇒
(
2
π
sin
x
)
=
0
⇒
2
π
sin
x
=
(
2
n
+
1
)
π
2
⇒
sin
x
=
2
n
+
1
4
=
±
1
4
,
±
3
4
⇒
sin
x
=
2
n
+
1
4
=
±
1
4
,
±
3
4
⇒
z
=
{
n
π
±
sin
−
1
1
4
,
n
π
±
sin
−
1
3
4
,
n
∈
I
}
g
′
(
x
)
=
0
⇒
−
sin
(
2
π
sin
x
)
(
2
π
cos
x
)
=
0
⇒
2
π
sin
x
=
n
π
or
x
=
(
2
n
+
)
π
2
⇒
sin
x
=
n
2
=
0
,
±
1
2
,
±
1
or
x
=
(
2
n
+
1
)
π
2
W
=
{
n
π
,
(
2
n
+
1
)
π
2
,
n
π
±
π
6
,
n
∈
I
}
so, correct combination is
(
I
I
)
→
(
Q
)
,
(
T
)
How many right angles is equal to
56
∘
15
′
?
Report Question
0%
8
5
right angles
0%
5
8
right angles
0%
3
5
right angles
0%
5
4
right angles
The number of solution of
|
tan
x
|
=
t
a
n
x
+
1
cos
x
in
[
0
,
2
π
]
is
Report Question
0%
4
0%
1
0%
2
0%
6
Explanation
Let split domain in two parts
[
0
,
π
2
]
∪
[
π
,
3
π
2
]
a
n
d
[
π
2
,
π
]
∪
[
3
π
2
,
2
π
]
Case - 1
x
ϵ
[
0
,
π
2
]
∪
[
π
,
3
π
2
]
,
|
t
a
n
x
|
=
t
a
n
x
=
t
a
n
x
+
1
c
o
s
x
1
c
o
s
x
=
0
⇒
no solution.
Case - 2
x
ϵ
[
π
2
,
π
]
∪
[
3
π
2
,
2
π
]
|
t
a
n
x
|
=
−
t
a
n
x
=
t
a
n
x
+
1
c
o
s
x
0
=
2
s
i
n
x
+
1
c
o
s
x
⇒
s
i
n
x
=
−
1
2
only one solution i.e.,
x
=
330
o
A solution
(
x
,
y
)
of
x
2
+
2
x
sin
(
x
y
)
+
1
=
0
is
Report Question
0%
(
1
,
0
)
0%
(
1
,
7
π
2
)
0%
(
−
1
,
7
π
2
)
0%
(
−
1
,
0
)
Explanation
we get
(
x
+
sin
(
x
y
)
)
2
+
cos
2
(
x
y
)
=
0
Now we verify with the options
The number of solution of the equation
|
cot
x
|
=
c
o
t
x
+
1
s
i
n
x
in
[
0
,
2
π
]
is
Report Question
0%
2
0%
4
0%
0
0%
1
Explanation
Let split the domain in two parts
[
0
,
π
2
]
∪
[
π
,
3
π
2
]
a
n
d
[
π
2
,
π
]
∪
[
3
π
2
,
2
π
]
Case -1
x
ϵ
[
0
,
π
2
]
∪
[
π
,
3
π
2
]
|
c
o
t
x
|
=
c
o
t
x
=
c
o
t
x
+
1
s
i
n
x
1
s
i
n
x
=
0
⇒
no solution
Case -2
x
ϵ
[
π
2
,
π
]
∪
[
3
π
2
,
2
π
]
|
c
o
t
x
|
=
−
c
o
t
x
=
c
o
t
x
+
1
s
i
n
x
2
c
o
s
x
+
1
s
i
n
x
=
0
c
o
s
x
=
−
1
2
only 1 solution i.e.
x
=
120
o
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page