Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 13 - MCQExams.com

The general solution of the equation sinθ=12 is
  • θ=nπ+π4,nl
  • θ=2nπ+π4,nl
  • θ=nπ+(1)nπ4,nl
  • none of these.
The general solution of the equation sin2θ=sin2α is
  • θ=nπ+αl
  • θ=nπ±α,nl
  • θ=2nπ+α,nl
  • θ=2nπ±α,nl
The general solution of the equation tan2θ=tan2α is
  • θ=nπ+αl
  • θ=2nπ+α,nl
  • θ=nπ±α,nl
  • θ=2nπ±α,nl
The general solution of the equation tanθ=13 is
  • θ=nπ+π6,nI
  • θ=2nπ+π6,nI
  • θ=2nπ±π6,nI
  • none of these.
The general solution of the equation tanθ=tanα is
  • θ=nπ+αl
  • θ=2nπ+α,nl
  • θ=2nπ±α,nl
  • θ=2nπ±α,nl
The general solution of the equation cos2θ=cos2α is
  • θ=nπ+αl
  • θ=2nπ+α,nl
  • θ=nπ±α,nl
  • θ=2nπ±α,nl
The general solution of the equation sinθ=32 is
  • θ=nπ+4π3,nI
  • θ=2nπ+4π3,nI
  • θ=nπ+(1)n4π3,nI
  • none of these.
The angles of a triangle are in AP and the ratio of the number of degrees in the least to the number of radius in the greatest is 60:π. The smallest angle is
  • 150
  • 300
  • 450
  • 600
The general solution of the equation cosθ=12 is
  • θ=nπ+π3,nI
  • θ=2nπ+π3,nI
  • θ=2nπ±π3,nI
  • none of these.
The general solution of the equation cosθ=cosα is
  • θ=α
  • θ=nπ±α,nl
  • θ=2nπ±α,nl
  • none of these
The general solution of the equation cosecθ+2=0 is
  • θ=nπ+5π4,nI
  • θ=nπ5π4,nI
  • θ=nπ+(1)n5π4,nI
  • none of these.
The general solution of the equation 4sin2θ=1 is
  • θ=nπ±π6,nI
  • θ=2nπ±π6,nI
  • θ=nπ4+π24,nI
  • none of these.
The general solution of the equation cotθ=3 is
  • θ=nπ+5π6,nl
  • θ=2nπ+5π6,nl
  • θ=nπ+2π3,nl
  • none of these.
The general solution of the equation sin2θ=12 is
  • θ=nπ4+π24,nI
  • nπ2+(1)n7π12,nN
  • θ=nπ4±π24,nI
  • none of these.
The general solution of the equation 2cos2θ=1 is
  • θ=2nπ±π4,nI
  • θ=nπ2+π8,nI
  • θ=nπ±π4,nI
  • none of these.
The general solution of the equation cot2θ=3 is
  • θ=nπ+π6,nI
  • θ=nπ±π6,nI
  • θ=2nπ+π6,nI
  • none of these.
The general solution of the equation cosθ=12 is
  • θ=nπ±2π3,nI
  • θ=2nπ+π3,nI
  • θ=2nπ±2π3,nI
  • none of these.
If x+1/x=2 , the principal value of sin1x is 
  • π/4
  • π/2
  • π
  • 3π/2
If x1 and x2 are two distinct roots of the equation acosx+bsinx=c, then tanx1+x22 is equal to
  • ab
  • ba
  • ca
  • ac
If cosecθcotθ=q, then the value of cosecθ is
  • q+1q
  • q1q
  • 12(q+1q)
  • none of these
The principal value of 
     cos1(cos2π3)+sin1(sin2π3) is
  • π
  • π/2
  • π/3
  • 4π/3
Evaluate : tan[2tan115π4]
  • 54
  • 516
  • 717
  • 717
The value of 516 right angles in sexagesimal system is equal to 
  • 28307
  • 27^{\circ} 5' 26''
  • 28^{\circ} 7' 30''
  • 29^{\circ} 3' 27''
The value of \dfrac{3 \pi}{4} in sexagesimal system is:
  • 75^{\circ}
  • 135^{\circ}
  • 120^{\circ}
  • 220^{\circ}
1 radian is equal to:
  • 180^{\circ}
  • 200^{\circ}
  • 100^{\circ}
  • None of these
Let f(X)=\sin (\pi\cos x) and g(x) =\cos (2\pi\sin x) be two function defined for x>0. Define the following sets whose elements are written in increasing order
X=\{x:f(x)=0\},Y=\{x:f'(x)=0\}
Z=\{x:g(x)=0\},W=\{x:g'(x)=0
List I contains sets X,Y,Z and W List II contains some information regarding these set.
Which of the following is the only correct combination ?
 Sr.NoList I  Sr.No List II 
 (I)(P) \supseteq\left\{\dfrac{\pi}{2},\dfrac{3\pi}{2},4\pi,7\pi\right\}
 (II)
(Q)
 an arithmetic progression
  (III)(R)
 NOT an arithmetic progression
  (IV) W(S)
 \supseteq \left\{\dfrac{\pi}{6},\dfrac{7\pi}{6},\dfrac{13\pi}{6}\right\}
  (T)
 \supseteq \left\{\dfrac{\pi}{3},\dfrac{2\pi}{3},\pi\right\}
  (U)
 \supseteq \left\{\dfrac{\pi}{6},\dfrac{3\pi}{4}\right\}

  • (I) (P) (R)
  • (II) (Q) (T)
  • (I) (Q) (U)
  • (II) (R) (S)
How many right angles is equal to 56^{\circ} 15' ?
  • \dfrac{8}{5} right angles
  • \dfrac{5}{8} right angles
  • \dfrac{3}{5} right angles
  • \dfrac{5}{4} right angles
The number of solution of |\tan x |= \ tanx + \displaystyle \dfrac{1}{\cos x} in [0,2\pi] is 
  • 4
  • 1
  • 2
  • 6
A solution (\mathrm{x},\mathrm{y}) of \mathrm{x}^{2}+2\mathrm{x} \sin(xy)+1=0 is
  • (1, 0)
  • (1, \dfrac{7\pi}2)
  • (-1,\dfrac{7\pi}2)
  • (-1,0)
The number of solution of the equation |\cot x|= cotx +\displaystyle \frac{1}{sin x} in [0,2\pi] is 
  • 2
  • 4
  • 0
  • 1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers