Processing math: 17%

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 13 - MCQExams.com

The general solution of the equation sinθ=12 is
  • θ=nπ+π4,nl
  • θ=2nπ+π4,nl
  • θ=nπ+(1)nπ4,nl
  • none of these.
The general solution of the equation sin2θ=sin2α is
  • θ=nπ+αl
  • θ=nπ±α,nl
  • θ=2nπ+α,nl
  • θ=2nπ±α,nl
The general solution of the equation tan2θ=tan2α is
  • θ=nπ+αl
  • θ=2nπ+α,nl
  • θ=nπ±α,nl
  • θ=2nπ±α,nl
The general solution of the equation tanθ=13 is
  • θ=nπ+π6,nI
  • θ=2nπ+π6,nI
  • θ=2nπ±π6,nI
  • none of these.
The general solution of the equation tanθ=tanα is
  • θ=nπ+αl
  • θ=2nπ+α,nl
  • θ=2nπ±α,nl
  • θ=2nπ±α,nl
The general solution of the equation cos2θ=cos2α is
  • θ=nπ+αl
  • θ=2nπ+α,nl
  • θ=nπ±α,nl
  • θ=2nπ±α,nl
The general solution of the equation sinθ=32 is
  • θ=nπ+4π3,nI
  • θ=2nπ+4π3,nI
  • θ=nπ+(1)n4π3,nI
  • none of these.
The angles of a triangle are in \displaystyle AP and the ratio of the number of degrees in the least to the number of radius in the greatest is \displaystyle 60 : \pi. The smallest angle is
  • \displaystyle 15^0
  • \displaystyle 30^0
  • \displaystyle 45^0
  • \displaystyle 60^0
The general solution of the equation \displaystyle cos\theta = \frac{1}{2} is
  • \displaystyle \theta = n\pi + \frac{\pi}{3}, n \in I
  • \displaystyle \theta = 2 n\pi + \frac{\pi}{3}, n \in I
  • \displaystyle \theta = 2 n\pi \pm \frac{\pi}{3}, n \in I
  • none of these.
The general solution of the equation \displaystyle cos \theta = cos \alpha is
  • \displaystyle \theta = \alpha
  • \displaystyle \theta = n\pi \pm \alpha, n \in l
  • \displaystyle \theta = 2n\pi \pm \alpha, n \in l
  • none of these
The general solution of the equation \displaystyle cosec \theta + \sqrt2 = 0 is
  • \displaystyle \theta = n\pi + \frac{5\pi}{4}, n \in I
  • \displaystyle \theta = n\pi - \frac{5\pi}{4}, n \in I
  • \displaystyle \theta = n\pi + (-1)^n \frac{5\pi}{4}, n \in I
  • none of these.
The general solution of the equation \displaystyle 4 sin^2\theta = 1 is
  • \displaystyle \theta = n\pi \pm \frac{\pi}{6}, n \in I
  • \displaystyle \theta = 2n\pi \pm \frac{\pi}{6}, n \in I
  • \displaystyle \theta = \frac{n\pi}{4} + \frac{\pi}{24}, n \in I
  • none of these.
The general solution of the equation \displaystyle cot \theta = -\sqrt3 is
  • \displaystyle \theta = n\pi +\frac{5\pi}{6}, n \in l
  • \displaystyle \theta = 2 n\pi + \frac{5\pi}{6}, n \in l
  • \displaystyle \theta = n\pi + \frac{2\pi}{3}, n \in l
  • none of these.
The general solution of the equation \displaystyle sin 2\theta = \frac{-1}{2} is
  • \displaystyle \theta = \frac{n\pi}{4} + \frac{\pi}{24}, n \in I
  • \displaystyle \frac{n\pi}{2} + (-1)^n \frac{7\pi}{12}, n \in N
  • \displaystyle \theta = \frac{n\pi}{4} \pm \frac{\pi}{24}, n \in I
  • none of these.
The general solution of the equation \displaystyle 2 cos^2\theta = 1 is
  • \displaystyle \theta = 2n\pi \pm \frac{\pi}{4}, n \in I
  • \displaystyle \theta = \frac{n\pi}{2} + \frac{\pi}{8}, n \in I
  • \displaystyle \theta = n\pi \pm \frac{\pi}{4}, n \in I
  • none of these.
The general solution of the equation \displaystyle cot^2\theta = 3 is
  • \displaystyle \theta = n\pi + \frac{\pi}{6},n \in I
  • \displaystyle \theta = n\pi \pm \frac{\pi}{6},n \in I
  • \displaystyle \theta = 2n\pi + \frac{\pi}{6},n \in I
  • none of these.
The general solution of the equation \displaystyle cos\theta = \frac{-1}{2} is
  • \displaystyle \theta = n\pi \pm \frac{2\pi}{3}, n \in I
  • \displaystyle \theta = 2 n\pi + \frac{\pi}{3}, n \in I
  • \displaystyle \theta = 2 n\pi \pm \frac{2\pi}{3}, n \in I
  • none of these.
If x + 1 / x = 2 , the principal value of sin^{-1}x is 
  • \pi / 4
  • \pi / 2
  • \pi
  • 3\pi / 2
If x_{1}  and  x_{2}  are two distinct roots of the equation  a \cos x+b \sin x=c,  then  \tan \dfrac{x_{1}+x_{2}}{2}  is equal to
  • \dfrac{a}{b}
  • \dfrac{b}{a}
  • \dfrac{c}{a}
  • \dfrac{a}{c}
If \operatorname{cosec} \theta-\cot \theta=q , then the value of  \operatorname{cosec} \theta  is
  • q+\dfrac{1}{q}
  • q-\dfrac{1}{q}
  • \dfrac{1}{2}\left(q+\dfrac{1}{q}\right)
  • none of these
The principal value of 
      cos^{-1} \left (cos\dfrac{2\pi}{3} \right ) + sin^{-1} \left (sin\dfrac{2\pi}{3} \right ) is
  • \pi
  • \pi/2
  • \pi/3
  • 4\pi/3
Evaluate : tan \left [ 2\, tan^{-1}\dfrac{1}{5} - \dfrac{\pi}{4} \right ]
  • \dfrac{5}{4}
  • \dfrac{5}{16}
  • - \dfrac{7}{17}
  • \dfrac{7}{17}
The value of \dfrac{5}{16} right angles in sexagesimal system is equal to 
  • 28^{\circ} 30' 7''
  • 27^{\circ} 5' 26''
  • 28^{\circ} 7' 30''
  • 29^{\circ} 3' 27''
The value of \dfrac{3 \pi}{4} in sexagesimal system is:
  • 75^{\circ}
  • 135^{\circ}
  • 120^{\circ}
  • 220^{\circ}
1 radian is equal to:
  • 180^{\circ}
  • 200^{\circ}
  • 100^{\circ}
  • None of these
Let f(X)=\sin (\pi\cos x) and g(x) =\cos (2\pi\sin x) be two function defined for x>0. Define the following sets whose elements are written in increasing order
X=\{x:f(x)=0\},Y=\{x:f'(x)=0\}
Z=\{x:g(x)=0\},W=\{x:g'(x)=0
List I contains sets X,Y,Z and W List II contains some information regarding these set.
Which of the following is the only correct combination ?
 Sr.NoList I  Sr.No List II 
 (I)(P) \supseteq\left\{\dfrac{\pi}{2},\dfrac{3\pi}{2},4\pi,7\pi\right\}
 (II)
(Q)
 an arithmetic progression
  (III)(R)
 NOT an arithmetic progression
  (IV) W(S)
 \supseteq \left\{\dfrac{\pi}{6},\dfrac{7\pi}{6},\dfrac{13\pi}{6}\right\}
  (T)
 \supseteq \left\{\dfrac{\pi}{3},\dfrac{2\pi}{3},\pi\right\}
  (U)
 \supseteq \left\{\dfrac{\pi}{6},\dfrac{3\pi}{4}\right\}

  • (I) (P) (R)
  • (II) (Q) (T)
  • (I) (Q) (U)
  • (II) (R) (S)
How many right angles is equal to 56^{\circ} 15' ?
  • \dfrac{8}{5} right angles
  • \dfrac{5}{8} right angles
  • \dfrac{3}{5} right angles
  • \dfrac{5}{4} right angles
The number of solution of |\tan x |= \ tanx + \displaystyle \dfrac{1}{\cos x} in [0,2\pi] is 
  • 4
  • 1
  • 2
  • 6
A solution (\mathrm{x},\mathrm{y}) of \mathrm{x}^{2}+2\mathrm{x} \sin(xy)+1=0 is
  • (1, 0)
  • (1, \dfrac{7\pi}2)
  • (-1,\dfrac{7\pi}2)
  • (-1,0)
The number of solution of the equation |\cot x|= cotx +\displaystyle \frac{1}{sin x} in [0,2\pi] is 
  • 2
  • 4
  • 0
  • 1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers