Processing math: 17%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 13 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 13
The general solution of the equation
s
i
n
θ
=
1
√
2
is
Report Question
0%
θ
=
n
π
+
π
4
,
n
∈
l
0%
θ
=
2
n
π
+
π
4
,
n
∈
l
0%
θ
=
n
π
+
(
−
1
)
n
π
4
,
n
∈
l
0%
none of these.
Explanation
s
i
n
θ
=
1
√
2
=
s
i
n
π
4
⇒
θ
=
n
π
+
(
−
1
)
n
π
4
,
n
∈
l
.
The general solution of the equation
s
i
n
2
θ
=
s
i
n
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
s
i
n
2
θ
=
s
i
n
2
α
⇒
2
s
i
n
2
θ
=
2
s
i
n
2
α
⇒
(
1
−
c
o
s
2
θ
)
=
(
1
−
c
o
s
2
α
)
⇒
c
o
s
2
θ
=
c
o
s
2
α
.
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
t
a
n
2
θ
=
t
a
n
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
t
a
n
2
θ
=
t
a
n
2
α
⇒
1
−
t
a
n
2
θ
1
+
t
a
n
2
θ
=
1
−
t
a
n
2
α
1
+
t
a
n
2
α
⇒
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
t
a
n
θ
=
1
√
3
is
Report Question
0%
θ
=
n
π
+
π
6
,
n
∈
I
0%
θ
=
2
n
π
+
π
6
,
n
∈
I
0%
θ
=
2
n
π
±
π
6
,
n
∈
I
0%
none of these.
Explanation
t
a
n
θ
=
1
√
3
=
t
a
n
π
6
⇒
θ
=
n
π
+
π
6
,
n
∈
l
.
The general solution of the equation
t
a
n
θ
=
t
a
n
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
The general solution of the equation
c
o
s
2
θ
=
c
o
s
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
c
o
s
2
θ
=
2
c
o
s
2
α
(
1
+
c
o
s
2
θ
)
=
(
1
+
c
o
s
2
α
)
⇒
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
s
i
n
θ
=
−
√
3
2
is
Report Question
0%
θ
=
n
π
+
4
π
3
,
n
∈
I
0%
θ
=
2
n
π
+
4
π
3
,
n
∈
I
0%
θ
=
n
π
+
(
−
1
)
n
4
π
3
,
n
∈
I
0%
none of these.
Explanation
s
i
n
θ
=
√
3
2
=
−
s
i
n
π
3
=
s
i
n
(
π
+
π
3
)
=
s
i
n
4
π
3
∴
.
The angles of a triangle are in
\displaystyle AP
and the ratio of the number of degrees in the least to the number of radius in the greatest is
\displaystyle 60 : \pi
. The smallest angle is
Report Question
0%
\displaystyle 15^0
0%
\displaystyle 30^0
0%
\displaystyle 45^0
0%
\displaystyle 60^0
Explanation
Let the angles be
\displaystyle (a - d)^0 , a^0
and
\displaystyle (a + d)^0
. Then,
\displaystyle a - d + a + a + d = 180 \Rightarrow 3a = 180 \Rightarrow a = 60
.
So, the angles are
\displaystyle (60 - d)^0, 60^0
and
\displaystyle(60 + d)^0
.
\displaystyle 180^0 = \pi^c \Rightarrow (60 + d)^0 =\left \{\frac{\pi}{180} \times (60 + d) \right\}^c = \left\{\frac{(60 + d) \pi}{180}\right\}^c
\therefore
\displaystyle \frac{(60 - d)}{(60 + d) \frac{\pi}{180}} = \frac{60}{\pi}\Rightarrow \frac{3(60 - d)}{(60 + d)} = 1
\displaystyle \Rightarrow 180 - 3d = 60 + d \Rightarrow 4d = 120 \Rightarrow d = 30
.
\therefore
the smallest angle =
\displaystyle (60 - 30)^0 = 30^0
.
The general solution of the equation
\displaystyle cos\theta = \frac{1}{2}
is
Report Question
0%
\displaystyle \theta = n\pi + \frac{\pi}{3}, n \in I
0%
\displaystyle \theta = 2 n\pi + \frac{\pi}{3}, n \in I
0%
\displaystyle \theta = 2 n\pi \pm \frac{\pi}{3}, n \in I
0%
none of these.
Explanation
\displaystyle cos \theta = \frac{1}{2} = cos \frac{\pi}{3}\Rightarrow \theta = 2n\pi \pm \frac{\pi}{3}, n \in l
.
The general solution of the equation
\displaystyle cos \theta = cos \alpha
is
Report Question
0%
\displaystyle \theta = \alpha
0%
\displaystyle \theta = n\pi \pm \alpha, n \in l
0%
\displaystyle \theta = 2n\pi \pm \alpha, n \in l
0%
none of these
The general solution of the equation
\displaystyle cosec \theta + \sqrt2 = 0
is
Report Question
0%
\displaystyle \theta = n\pi + \frac{5\pi}{4}, n \in I
0%
\displaystyle \theta = n\pi - \frac{5\pi}{4}, n \in I
0%
\displaystyle \theta = n\pi + (-1)^n \frac{5\pi}{4}, n \in I
0%
none of these.
Explanation
\displaystyle cosec \theta = -\sqrt2 \Rightarrow sin \theta = \frac{-1}{\sqrt2} = - sin \frac{\pi}{4} = sin \left(\pi + \frac{\pi}{4}\right) = sin \frac{5\pi}{4}
\displaystyle \Rightarrow \theta = n\pi + (-1)^n . \frac{5\pi}{4}, n \in I.
The general solution of the equation
\displaystyle 4 sin^2\theta = 1
is
Report Question
0%
\displaystyle \theta = n\pi \pm \frac{\pi}{6}, n \in I
0%
\displaystyle \theta = 2n\pi \pm \frac{\pi}{6}, n \in I
0%
\displaystyle \theta = \frac{n\pi}{4} + \frac{\pi}{24}, n \in I
0%
none of these.
Explanation
\displaystyle 4sin^2 \theta = 1 \Rightarrow sin^2 \theta = \frac{1}{4} = \left(\frac{1}{2}\right)^2 = sin^2 \frac{\pi}{6}
\displaystyle \Rightarrow x = n\pi \pm \frac{\pi}{6}, n \in I
The general solution of the equation
\displaystyle cot \theta = -\sqrt3
is
Report Question
0%
\displaystyle \theta = n\pi +\frac{5\pi}{6}, n \in l
0%
\displaystyle \theta = 2 n\pi + \frac{5\pi}{6}, n \in l
0%
\displaystyle \theta = n\pi + \frac{2\pi}{3}, n \in l
0%
none of these.
Explanation
cot\theta = -\sqrt3 \Rightarrow tan \theta = \frac{-1}{\sqrt3} = -tan\frac{\pi}{6} = tan \left(\pi - \frac{\pi}{6}\right) = tan \frac{5\pi}{6}
\displaystyle \Rightarrow \theta = \left(n\pi + \frac{5\pi}{6}\right), n\in l
.
The general solution of the equation
\displaystyle sin 2\theta = \frac{-1}{2}
is
Report Question
0%
\displaystyle \theta = \frac{n\pi}{4} + \frac{\pi}{24}, n \in I
0%
\displaystyle \frac{n\pi}{2} + (-1)^n \frac{7\pi}{12}, n \in N
0%
\displaystyle \theta = \frac{n\pi}{4} \pm \frac{\pi}{24}, n \in I
0%
none of these.
Explanation
\displaystyle sin 2\theta = \frac {-1}{2} = -sin \frac{\pi}{6} = sin \left(\pi + \frac{\pi}{6}\right) = sin \frac{7\pi}{6}
\displaystyle \Rightarrow 2\theta = nx + (-1)^n . \frac{7\pi}{6}, n \in I \Rightarrow \theta = \frac {n\pi}{2} +(-1)^n \frac{7\pi}{12}, n \in I.
The general solution of the equation
\displaystyle 2 cos^2\theta = 1
is
Report Question
0%
\displaystyle \theta = 2n\pi \pm \frac{\pi}{4}, n \in I
0%
\displaystyle \theta = \frac{n\pi}{2} + \frac{\pi}{8}, n \in I
0%
\displaystyle \theta = n\pi \pm \frac{\pi}{4}, n \in I
0%
none of these.
Explanation
\displaystyle 2cos^2 \theta = 1 \Rightarrow cos^2 \theta = \frac{1}{2} = \left(\frac{1}{\sqrt2}\right)^2 = cos^2 \frac{\pi}{4}
\displaystyle \therefore \theta = n\pi \pm \frac{\pi}{4}, n \in N.
The general solution of the equation
\displaystyle cot^2\theta = 3
is
Report Question
0%
\displaystyle \theta = n\pi + \frac{\pi}{6},n \in I
0%
\displaystyle \theta = n\pi \pm \frac{\pi}{6},n \in I
0%
\displaystyle \theta = 2n\pi + \frac{\pi}{6},n \in I
0%
none of these.
Explanation
\displaystyle cot^2 \theta = 3 \Rightarrow tan^2 \theta = \frac{1}{3}
\displaystyle = \left( \frac{1}{\sqrt3}\right)^2 = tan^2 \frac{\pi}{6} \Rightarrow \theta = nx \pm \frac{\pi}{6}, n \in I.
The general solution of the equation
\displaystyle cos\theta = \frac{-1}{2}
is
Report Question
0%
\displaystyle \theta = n\pi \pm \frac{2\pi}{3}, n \in I
0%
\displaystyle \theta = 2 n\pi + \frac{\pi}{3}, n \in I
0%
\displaystyle \theta = 2 n\pi \pm \frac{2\pi}{3}, n \in I
0%
none of these.
Explanation
\displaystyle cos \theta = \frac{-1}{2} = -cos \frac{\pi}{3} = cos \left(\pi - \frac{pi}{3}\right) = cos \frac{2\pi}{3}
\displaystyle \therefore \theta = \left(2n\pi \pm \frac{2\pi}{3}\right), n\in l
.
If
x + 1 / x = 2
, the principal value of
sin^{-1}x
is
Report Question
0%
\pi / 4
0%
\pi / 2
0%
\pi
0%
3\pi / 2
If
x_{1}
and
x_{2}
are two distinct roots of the equation
a \cos x+b \sin x=c,
then
\tan \dfrac{x_{1}+x_{2}}{2}
is equal to
Report Question
0%
\dfrac{a}{b}
0%
\dfrac{b}{a}
0%
\dfrac{c}{a}
0%
\dfrac{a}{c}
Explanation
a \cos x+b \sin x=c
\Rightarrow \dfrac{a\left(1-\tan ^{2} \dfrac{x}{2}\right)}{1+\tan ^{2} \dfrac{x}{2}}+\dfrac{2 b \tan \dfrac{x}{2}}{1+\tan ^{2} \dfrac{x}{2}}=c
\Rightarrow \quad(c+a) \tan ^{2} \dfrac{x}{2}-2 b \tan \dfrac{x}{2}+c-a=0
\Rightarrow \quad \tan \dfrac{x_{1}}{2}+\tan \dfrac{x_{2}}{2}=\dfrac{2 b}{c+a}
and
\tan \dfrac{x_{1}}{2} \tan \dfrac{x_{2}}{2}=\dfrac{c-a}{c+a}
Using,
\tan \left(\dfrac{x_{1}+x_{2}}{2}\right)=\dfrac { \tan \dfrac{x_{1}}{2}+\tan \dfrac{x_{2}}{2}}{1-\tan \dfrac{x_{1}}{2} \tan \dfrac{x_{2}}{2}}
\Rightarrow \tan \left(\dfrac{x_{1}+x_{2}}{2}\right)=\dfrac{\dfrac{2 b}{c+a}}{1-\dfrac{c-a}{c+a}}=\dfrac{2 b}{2 a}=\dfrac{b}{a}
If
\operatorname{cosec} \theta-\cot \theta=q
, then the value of
\operatorname{cosec} \theta
is
Report Question
0%
q+\dfrac{1}{q}
0%
q-\dfrac{1}{q}
0%
\dfrac{1}{2}\left(q+\dfrac{1}{q}\right)
0%
none of these
Explanation
\operatorname{cosec} \theta-\cot \theta=q
\operatorname{cosec}^2 \theta-\cot^2 \theta=1\Rightarrow (\operatorname{cosec} \theta-\cot \theta ) (\operatorname{cosec} \theta+\cot \theta)=1 \Rightarrow q \cdot (\operatorname{cosec} \theta+\cot \theta)=1
\therefore \quad \operatorname{cosec} \theta+\cot \theta=\dfrac{1}{q}
\therefore \quad \operatorname{cosec} \theta=\dfrac{1}{2}[q+(1 / q)](\text { on addition })
The principal value of
cos^{-1} \left (cos\dfrac{2\pi}{3} \right ) + sin^{-1} \left (sin\dfrac{2\pi}{3} \right )
is
Report Question
0%
\pi
0%
\pi/2
0%
\pi/3
0%
4\pi/3
Evaluate :
tan \left [ 2\, tan^{-1}\dfrac{1}{5} - \dfrac{\pi}{4} \right ]
Report Question
0%
\dfrac{5}{4}
0%
\dfrac{5}{16}
0%
- \dfrac{7}{17}
0%
\dfrac{7}{17}
The value of
\dfrac{5}{16}
right angles in sexagesimal system is equal to
Report Question
0%
28^{\circ} 30' 7''
0%
27^{\circ} 5' 26''
0%
28^{\circ} 7' 30''
0%
29^{\circ} 3' 27''
The value of
\dfrac{3 \pi}{4}
in sexagesimal system is:
Report Question
0%
75^{\circ}
0%
135^{\circ}
0%
120^{\circ}
0%
220^{\circ}
1 radian is equal to:
Report Question
0%
180^{\circ}
0%
200^{\circ}
0%
100^{\circ}
0%
None of these
Let
f(X)=\sin (\pi\cos x)
and
g(x) =\cos (2\pi\sin x)
be two function defined for
x>0
. Define the following sets whose elements are written in increasing order
X=\{x:f(x)=0\},Y=\{x:f'(x)=0\}
Z=\{x:g(x)=0\},W=\{x:g'(x)=0
List I contains sets
X,Y,Z
and
W
List II contains some information regarding these set.
Which of the following is the only correct combination ?
Sr.No
List I
Sr.No
List II
(I)
X
(P)
\supseteq\left\{\dfrac{\pi}{2},\dfrac{3\pi}{2},4\pi,7\pi\right\}
(II)
Y
(Q)
an arithmetic progression
(III)
Z
(R)
NOT an arithmetic progression
(IV)
W
(S)
\supseteq \left\{\dfrac{\pi}{6},\dfrac{7\pi}{6},\dfrac{13\pi}{6}\right\}
(T)
\supseteq \left\{\dfrac{\pi}{3},\dfrac{2\pi}{3},\pi\right\}
(U)
\supseteq \left\{\dfrac{\pi}{6},\dfrac{3\pi}{4}\right\}
Report Question
0%
(I) (P) (R)
0%
(II) (Q) (T)
0%
(I) (Q) (U)
0%
(II) (R) (S)
Explanation
f(x)=0\Rightarrow \sin (\pi \cos x )=0
=\pi \cos x =n\pi \Rightarrow \cos x =n
= \cos x =-1,0,1 \Rightarrow X=\{n\pi,(2n+1)\dfrac{\pi}{2}\}=\{n\dfrac{\pi}{2},n\in I\}
f'(x)=0\Rightarrow \cos (\pi\cos x )(-\pi \sin x )=0
\pi \cos x =(2n+1)\dfrac{\pi}{2}
or
x=n\pi
\Rightarrow \cos x =n+\dfrac{1}{2}
or
x=n\pi
\Rightarrow \cos x =\pm \dfrac{1}{2}
or
x=n\pi
\Rightarrow Y=\left\{.....-\dfrac{2\pi}{3},\dfrac{\pi}{3},0,\dfrac{\pi}{3},\dfrac{2\pi}{3},\pi,\dfrac{4\pi}{3},.....\right\}
which is an arithmetic progression
g(x) =0
\Rightarrow (2\pi \sin x)=0
\Rightarrow 2\pi \sin x =(2n+1)\dfrac{\pi}{2}
\Rightarrow \sin x=\dfrac{2n+1}{4}=\pm \dfrac{1}{4},\pm \dfrac{3}{4}
\Rightarrow \sin x =\dfrac{2n+1}{4}=\pm\dfrac{1}{4},\pm\dfrac{3}{4}
\Rightarrow z=\left\{n\pi\pm\sin^{-1}\dfrac{1}{4},n\pi \pm \sin^{-1}\dfrac{3}{4},n\in I\right\}
g'(x)=0
\Rightarrow -\sin (2\pi \sin x )(2\pi\cos x )=0
\Rightarrow 2\pi \sin x= n\pi
or
x=(2n+)\dfrac{\pi}{2}
\Rightarrow \sin x =\dfrac{n}{2}=0,\pm \dfrac{1}{2},\pm 1
or
x=(2n+1)\dfrac{\pi}{2}
W=\left\{n\pi ,(2n+1)\dfrac{\pi}{2},n\pi \pm \dfrac{\pi}{6},n\in I\right\}
so, correct combination is
(II)
\rightarrow
(Q), (T)
How many right angles is equal to
56^{\circ} 15'
?
Report Question
0%
\dfrac{8}{5}
right angles
0%
\dfrac{5}{8}
right angles
0%
\dfrac{3}{5}
right angles
0%
\dfrac{5}{4}
right angles
The number of solution of
|\tan x |= \ tanx + \displaystyle \dfrac{1}{\cos x}
in
[0,2\pi]
is
Report Question
0%
4
0%
1
0%
2
0%
6
Explanation
Let split domain in two parts
\displaystyle [0,\frac{\pi }{2}] \cup [\pi , \frac{3\pi }{2}]
\ and \ [\frac{\pi }{2} , \pi ] \cup [\frac{3\pi }{2} , 2\pi ]
Case - 1
\displaystyle x\epsilon [0,\frac{\pi }{2}] \cup [\pi , \frac{3\pi }{2}] , |tan x|=tan x=tan x+\frac{1}{cos x}
\displaystyle \frac{1}{cos x}=0
\Rightarrow
no solution.
Case - 2
\displaystyle x\epsilon [\frac{\pi }{2} , \pi ] \cup [\frac{3\pi }{2} , 2\pi ]
|tan x|=-tan x=tan x+\frac{1}{cos x}
\displaystyle 0=\frac{2sin x+1}{cos x}
\displaystyle \Rightarrow sin x=-\frac{1}{2}
only one solution i.e.,
x=330^{o}
A solution
(\mathrm{x},\mathrm{y})
of
\mathrm{x}^{2}+2\mathrm{x}
\sin(xy)+1=0
is
Report Question
0%
(1, 0)
0%
(1, \dfrac{7\pi}2)
0%
(-1,\dfrac{7\pi}2)
0%
(-1,0)
Explanation
we get
(x + \sin(xy))^{2} + \cos^{2}(xy) = 0
Now we verify with the options
The number of solution of the equation
|\cot x|= cotx +\displaystyle \frac{1}{sin x}
in
[0,2\pi]
is
Report Question
0%
2
0%
4
0%
0
0%
1
Explanation
Let split the domain in two parts
\displaystyle [0, \frac{\pi }{2}] \cup [\pi , \frac{3\pi }{2}] \ and \ [\frac{\pi }{2} , \pi ]\cup [\frac{3\pi }{2} , 2\pi ]
Case -1
\displaystyle x\epsilon [0,\frac{\pi }{2}] \cup [\pi , \frac{3\pi }{2}]
\displaystyle |cot x|=cot x=cot x+\frac{1}{sin x}
\displaystyle \frac{1}{sin x}=0
\Rightarrow
no solution
Case -2
x\epsilon [\frac{\pi }{2} , \pi] \cup [\frac{3\pi }{2} , 2\pi]
\displaystyle |cot x|=-cot x=cot x+\frac{1}{sin x}
\displaystyle \frac{2cos x+1}{sin x}=0
cos x=-\frac{1}{2}
only 1 solution i.e.
x=120 ^{o}
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page