Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 13 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 13
The general solution of the equation
s
i
n
θ
=
1
√
2
is
Report Question
0%
θ
=
n
π
+
π
4
,
n
∈
l
0%
θ
=
2
n
π
+
π
4
,
n
∈
l
0%
θ
=
n
π
+
(
−
1
)
n
π
4
,
n
∈
l
0%
none of these.
Explanation
s
i
n
θ
=
1
√
2
=
s
i
n
π
4
⇒
θ
=
n
π
+
(
−
1
)
n
π
4
,
n
∈
l
.
The general solution of the equation
s
i
n
2
θ
=
s
i
n
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
s
i
n
2
θ
=
s
i
n
2
α
⇒
2
s
i
n
2
θ
=
2
s
i
n
2
α
⇒
(
1
−
c
o
s
2
θ
)
=
(
1
−
c
o
s
2
α
)
⇒
c
o
s
2
θ
=
c
o
s
2
α
.
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
t
a
n
2
θ
=
t
a
n
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
t
a
n
2
θ
=
t
a
n
2
α
⇒
1
−
t
a
n
2
θ
1
+
t
a
n
2
θ
=
1
−
t
a
n
2
α
1
+
t
a
n
2
α
⇒
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
t
a
n
θ
=
1
√
3
is
Report Question
0%
θ
=
n
π
+
π
6
,
n
∈
I
0%
θ
=
2
n
π
+
π
6
,
n
∈
I
0%
θ
=
2
n
π
±
π
6
,
n
∈
I
0%
none of these.
Explanation
t
a
n
θ
=
1
√
3
=
t
a
n
π
6
⇒
θ
=
n
π
+
π
6
,
n
∈
l
.
The general solution of the equation
t
a
n
θ
=
t
a
n
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
The general solution of the equation
c
o
s
2
θ
=
c
o
s
2
α
is
Report Question
0%
θ
=
n
π
+
α
∈
l
0%
θ
=
2
n
π
+
α
,
n
∈
l
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
Explanation
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
c
o
s
2
θ
=
2
c
o
s
2
α
(
1
+
c
o
s
2
θ
)
=
(
1
+
c
o
s
2
α
)
⇒
c
o
s
2
θ
=
c
o
s
2
α
⇒
2
θ
=
2
n
π
±
2
α
⇒
θ
=
n
π
±
α
,
n
∈
l
.
The general solution of the equation
s
i
n
θ
=
−
√
3
2
is
Report Question
0%
θ
=
n
π
+
4
π
3
,
n
∈
I
0%
θ
=
2
n
π
+
4
π
3
,
n
∈
I
0%
θ
=
n
π
+
(
−
1
)
n
4
π
3
,
n
∈
I
0%
none of these.
Explanation
s
i
n
θ
=
√
3
2
=
−
s
i
n
π
3
=
s
i
n
(
π
+
π
3
)
=
s
i
n
4
π
3
∴
θ
=
n
π
+
(
−
1
)
n
4
π
3
,
n
∈
l
.
The angles of a triangle are in
A
P
and the ratio of the number of degrees in the least to the number of radius in the greatest is
60
:
π
. The smallest angle is
Report Question
0%
15
0
0%
30
0
0%
45
0
0%
60
0
Explanation
Let the angles be
(
a
−
d
)
0
,
a
0
and
(
a
+
d
)
0
. Then,
a
−
d
+
a
+
a
+
d
=
180
⇒
3
a
=
180
⇒
a
=
60
.
So, the angles are
(
60
−
d
)
0
,
60
0
and
(
60
+
d
)
0
.
180
0
=
π
c
⇒
(
60
+
d
)
0
=
{
π
180
×
(
60
+
d
)
}
c
=
{
(
60
+
d
)
π
180
}
c
∴
(
60
−
d
)
(
60
+
d
)
π
180
=
60
π
⇒
3
(
60
−
d
)
(
60
+
d
)
=
1
⇒
180
−
3
d
=
60
+
d
⇒
4
d
=
120
⇒
d
=
30
.
∴
the smallest angle =
(
60
−
30
)
0
=
30
0
.
The general solution of the equation
c
o
s
θ
=
1
2
is
Report Question
0%
θ
=
n
π
+
π
3
,
n
∈
I
0%
θ
=
2
n
π
+
π
3
,
n
∈
I
0%
θ
=
2
n
π
±
π
3
,
n
∈
I
0%
none of these.
Explanation
c
o
s
θ
=
1
2
=
c
o
s
π
3
⇒
θ
=
2
n
π
±
π
3
,
n
∈
l
.
The general solution of the equation
c
o
s
θ
=
c
o
s
α
is
Report Question
0%
θ
=
α
0%
θ
=
n
π
±
α
,
n
∈
l
0%
θ
=
2
n
π
±
α
,
n
∈
l
0%
none of these
The general solution of the equation
c
o
s
e
c
θ
+
√
2
=
0
is
Report Question
0%
θ
=
n
π
+
5
π
4
,
n
∈
I
0%
θ
=
n
π
−
5
π
4
,
n
∈
I
0%
θ
=
n
π
+
(
−
1
)
n
5
π
4
,
n
∈
I
0%
none of these.
Explanation
c
o
s
e
c
θ
=
−
√
2
⇒
s
i
n
θ
=
−
1
√
2
=
−
s
i
n
π
4
=
s
i
n
(
π
+
π
4
)
=
s
i
n
5
π
4
⇒
θ
=
n
π
+
(
−
1
)
n
.
5
π
4
,
n
∈
I
.
The general solution of the equation
4
s
i
n
2
θ
=
1
is
Report Question
0%
θ
=
n
π
±
π
6
,
n
∈
I
0%
θ
=
2
n
π
±
π
6
,
n
∈
I
0%
θ
=
n
π
4
+
π
24
,
n
∈
I
0%
none of these.
Explanation
4
s
i
n
2
θ
=
1
⇒
s
i
n
2
θ
=
1
4
=
(
1
2
)
2
=
s
i
n
2
π
6
⇒
x
=
n
π
±
π
6
,
n
∈
I
The general solution of the equation
c
o
t
θ
=
−
√
3
is
Report Question
0%
θ
=
n
π
+
5
π
6
,
n
∈
l
0%
θ
=
2
n
π
+
5
π
6
,
n
∈
l
0%
θ
=
n
π
+
2
π
3
,
n
∈
l
0%
none of these.
Explanation
c
o
t
θ
=
−
√
3
⇒
t
a
n
θ
=
−
1
√
3
=
−
t
a
n
π
6
=
t
a
n
(
π
−
π
6
)
=
t
a
n
5
π
6
⇒
θ
=
(
n
π
+
5
π
6
)
,
n
∈
l
.
The general solution of the equation
s
i
n
2
θ
=
−
1
2
is
Report Question
0%
θ
=
n
π
4
+
π
24
,
n
∈
I
0%
n
π
2
+
(
−
1
)
n
7
π
12
,
n
∈
N
0%
θ
=
n
π
4
±
π
24
,
n
∈
I
0%
none of these.
Explanation
s
i
n
2
θ
=
−
1
2
=
−
s
i
n
π
6
=
s
i
n
(
π
+
π
6
)
=
s
i
n
7
π
6
⇒
2
θ
=
n
x
+
(
−
1
)
n
.
7
π
6
,
n
∈
I
⇒
θ
=
n
π
2
+
(
−
1
)
n
7
π
12
,
n
∈
I
.
The general solution of the equation
2
c
o
s
2
θ
=
1
is
Report Question
0%
θ
=
2
n
π
±
π
4
,
n
∈
I
0%
θ
=
n
π
2
+
π
8
,
n
∈
I
0%
θ
=
n
π
±
π
4
,
n
∈
I
0%
none of these.
Explanation
2
c
o
s
2
θ
=
1
⇒
c
o
s
2
θ
=
1
2
=
(
1
√
2
)
2
=
c
o
s
2
π
4
∴
θ
=
n
π
±
π
4
,
n
∈
N
.
The general solution of the equation
c
o
t
2
θ
=
3
is
Report Question
0%
θ
=
n
π
+
π
6
,
n
∈
I
0%
θ
=
n
π
±
π
6
,
n
∈
I
0%
θ
=
2
n
π
+
π
6
,
n
∈
I
0%
none of these.
Explanation
c
o
t
2
θ
=
3
⇒
t
a
n
2
θ
=
1
3
=
(
1
√
3
)
2
=
t
a
n
2
π
6
⇒
θ
=
n
x
±
π
6
,
n
∈
I
.
The general solution of the equation
c
o
s
θ
=
−
1
2
is
Report Question
0%
θ
=
n
π
±
2
π
3
,
n
∈
I
0%
θ
=
2
n
π
+
π
3
,
n
∈
I
0%
θ
=
2
n
π
±
2
π
3
,
n
∈
I
0%
none of these.
Explanation
c
o
s
θ
=
−
1
2
=
−
c
o
s
π
3
=
c
o
s
(
π
−
p
i
3
)
=
c
o
s
2
π
3
∴
θ
=
(
2
n
π
±
2
π
3
)
,
n
∈
l
.
If
x
+
1
/
x
=
2
, the principal value of
s
i
n
−
1
x
is
Report Question
0%
π
/
4
0%
π
/
2
0%
π
0%
3
π
/
2
If
x
1
and
x
2
are two distinct roots of the equation
a
cos
x
+
b
sin
x
=
c
,
then
tan
x
1
+
x
2
2
is equal to
Report Question
0%
a
b
0%
b
a
0%
c
a
0%
a
c
Explanation
a
cos
x
+
b
sin
x
=
c
⇒
a
(
1
−
tan
2
x
2
)
1
+
tan
2
x
2
+
2
b
tan
x
2
1
+
tan
2
x
2
=
c
⇒
(
c
+
a
)
tan
2
x
2
−
2
b
tan
x
2
+
c
−
a
=
0
⇒
tan
x
1
2
+
tan
x
2
2
=
2
b
c
+
a
and
tan
x
1
2
tan
x
2
2
=
c
−
a
c
+
a
Using,
tan
(
x
1
+
x
2
2
)
=
tan
x
1
2
+
tan
x
2
2
1
−
tan
x
1
2
tan
x
2
2
⇒
tan
(
x
1
+
x
2
2
)
=
2
b
c
+
a
1
−
c
−
a
c
+
a
=
2
b
2
a
=
b
a
If
cosec
θ
−
cot
θ
=
q
, then the value of
cosec
θ
is
Report Question
0%
q
+
1
q
0%
q
−
1
q
0%
1
2
(
q
+
1
q
)
0%
none of these
Explanation
cosec
θ
−
cot
θ
=
q
cosec
2
θ
−
cot
2
θ
=
1
⇒
(
cosec
θ
−
cot
θ
)
(
cosec
θ
+
cot
θ
)
=
1
⇒
q
⋅
(
cosec
θ
+
cot
θ
)
=
1
∴
cosec
θ
+
cot
θ
=
1
q
∴
cosec
θ
=
1
2
[
q
+
(
1
/
q
)
]
(
on addition
)
The principal value of
c
o
s
−
1
(
c
o
s
2
π
3
)
+
s
i
n
−
1
(
s
i
n
2
π
3
)
is
Report Question
0%
π
0%
π
/
2
0%
π
/
3
0%
4
π
/
3
Evaluate :
t
a
n
[
2
t
a
n
−
1
1
5
−
π
4
]
Report Question
0%
5
4
0%
5
16
0%
−
7
17
0%
7
17
The value of
5
16
right angles in sexagesimal system is equal to
Report Question
0%
28
∘
30
′
7
″
0%
27^{\circ} 5' 26''
0%
28^{\circ} 7' 30''
0%
29^{\circ} 3' 27''
The value of
\dfrac{3 \pi}{4}
in sexagesimal system is:
Report Question
0%
75^{\circ}
0%
135^{\circ}
0%
120^{\circ}
0%
220^{\circ}
1 radian is equal to:
Report Question
0%
180^{\circ}
0%
200^{\circ}
0%
100^{\circ}
0%
None of these
Let
f(X)=\sin (\pi\cos x)
and
g(x) =\cos (2\pi\sin x)
be two function defined for
x>0
. Define the following sets whose elements are written in increasing order
X=\{x:f(x)=0\},Y=\{x:f'(x)=0\}
Z=\{x:g(x)=0\},W=\{x:g'(x)=0
List I contains sets
X,Y,Z
and
W
List II contains some information regarding these set.
Which of the following is the only correct combination ?
Sr.No
List I
Sr.No
List II
(I)
X
(P)
\supseteq\left\{\dfrac{\pi}{2},\dfrac{3\pi}{2},4\pi,7\pi\right\}
(II)
Y
(Q)
an arithmetic progression
(III)
Z
(R)
NOT an arithmetic progression
(IV)
W
(S)
\supseteq \left\{\dfrac{\pi}{6},\dfrac{7\pi}{6},\dfrac{13\pi}{6}\right\}
(T)
\supseteq \left\{\dfrac{\pi}{3},\dfrac{2\pi}{3},\pi\right\}
(U)
\supseteq \left\{\dfrac{\pi}{6},\dfrac{3\pi}{4}\right\}
Report Question
0%
(I) (P) (R)
0%
(II) (Q) (T)
0%
(I) (Q) (U)
0%
(II) (R) (S)
Explanation
f(x)=0\Rightarrow \sin (\pi \cos x )=0
=\pi \cos x =n\pi \Rightarrow \cos x =n
= \cos x =-1,0,1 \Rightarrow X=\{n\pi,(2n+1)\dfrac{\pi}{2}\}=\{n\dfrac{\pi}{2},n\in I\}
f'(x)=0\Rightarrow \cos (\pi\cos x )(-\pi \sin x )=0
\pi \cos x =(2n+1)\dfrac{\pi}{2}
or
x=n\pi
\Rightarrow \cos x =n+\dfrac{1}{2}
or
x=n\pi
\Rightarrow \cos x =\pm \dfrac{1}{2}
or
x=n\pi
\Rightarrow Y=\left\{.....-\dfrac{2\pi}{3},\dfrac{\pi}{3},0,\dfrac{\pi}{3},\dfrac{2\pi}{3},\pi,\dfrac{4\pi}{3},.....\right\}
which is an arithmetic progression
g(x) =0
\Rightarrow (2\pi \sin x)=0
\Rightarrow 2\pi \sin x =(2n+1)\dfrac{\pi}{2}
\Rightarrow \sin x=\dfrac{2n+1}{4}=\pm \dfrac{1}{4},\pm \dfrac{3}{4}
\Rightarrow \sin x =\dfrac{2n+1}{4}=\pm\dfrac{1}{4},\pm\dfrac{3}{4}
\Rightarrow z=\left\{n\pi\pm\sin^{-1}\dfrac{1}{4},n\pi \pm \sin^{-1}\dfrac{3}{4},n\in I\right\}
g'(x)=0
\Rightarrow -\sin (2\pi \sin x )(2\pi\cos x )=0
\Rightarrow 2\pi \sin x= n\pi
or
x=(2n+)\dfrac{\pi}{2}
\Rightarrow \sin x =\dfrac{n}{2}=0,\pm \dfrac{1}{2},\pm 1
or
x=(2n+1)\dfrac{\pi}{2}
W=\left\{n\pi ,(2n+1)\dfrac{\pi}{2},n\pi \pm \dfrac{\pi}{6},n\in I\right\}
so, correct combination is
(II)
\rightarrow
(Q), (T)
How many right angles is equal to
56^{\circ} 15'
?
Report Question
0%
\dfrac{8}{5}
right angles
0%
\dfrac{5}{8}
right angles
0%
\dfrac{3}{5}
right angles
0%
\dfrac{5}{4}
right angles
The number of solution of
|\tan x |= \ tanx + \displaystyle \dfrac{1}{\cos x}
in
[0,2\pi]
is
Report Question
0%
4
0%
1
0%
2
0%
6
Explanation
Let split domain in two parts
\displaystyle [0,\frac{\pi }{2}] \cup [\pi , \frac{3\pi }{2}]
\ and \ [\frac{\pi }{2} , \pi ] \cup [\frac{3\pi }{2} , 2\pi ]
Case - 1
\displaystyle x\epsilon [0,\frac{\pi }{2}] \cup [\pi , \frac{3\pi }{2}] , |tan x|=tan x=tan x+\frac{1}{cos x}
\displaystyle \frac{1}{cos x}=0
\Rightarrow
no solution.
Case - 2
\displaystyle x\epsilon [\frac{\pi }{2} , \pi ] \cup [\frac{3\pi }{2} , 2\pi ]
|tan x|=-tan x=tan x+\frac{1}{cos x}
\displaystyle 0=\frac{2sin x+1}{cos x}
\displaystyle \Rightarrow sin x=-\frac{1}{2}
only one solution i.e.,
x=330^{o}
A solution
(\mathrm{x},\mathrm{y})
of
\mathrm{x}^{2}+2\mathrm{x}
\sin(xy)+1=0
is
Report Question
0%
(1, 0)
0%
(1, \dfrac{7\pi}2)
0%
(-1,\dfrac{7\pi}2)
0%
(-1,0)
Explanation
we get
(x + \sin(xy))^{2} + \cos^{2}(xy) = 0
Now we verify with the options
The number of solution of the equation
|\cot x|= cotx +\displaystyle \frac{1}{sin x}
in
[0,2\pi]
is
Report Question
0%
2
0%
4
0%
0
0%
1
Explanation
Let split the domain in two parts
\displaystyle [0, \frac{\pi }{2}] \cup [\pi , \frac{3\pi }{2}] \ and \ [\frac{\pi }{2} , \pi ]\cup [\frac{3\pi }{2} , 2\pi ]
Case -1
\displaystyle x\epsilon [0,\frac{\pi }{2}] \cup [\pi , \frac{3\pi }{2}]
\displaystyle |cot x|=cot x=cot x+\frac{1}{sin x}
\displaystyle \frac{1}{sin x}=0
\Rightarrow
no solution
Case -2
x\epsilon [\frac{\pi }{2} , \pi] \cup [\frac{3\pi }{2} , 2\pi]
\displaystyle |cot x|=-cot x=cot x+\frac{1}{sin x}
\displaystyle \frac{2cos x+1}{sin x}=0
cos x=-\frac{1}{2}
only 1 solution i.e.
x=120 ^{o}
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page