Explanation
since sinx>0 we can cancel it from both sides cos3x>cosxsin2x cosx(cos2x−sin2x)>0 cosxcos2x>0 which holds only if 0≤x<π4
|tanx+secx|=|tanx|−|secx|,xϵ[0,2π]if and only if x belongs to the interval
|tanx+secx|=|tanx|−|secx|
Then tanx.secx≤0 and |tanx|≥|secx|
Now,|tanx|≥|secx| ⇒tan2x≥sec2x
⇒tan2x≥1+tan2x⇒0≥1 This is not possible.
tanα1−cotα+cotα1−tanα
=tanα1−1tanα+cotα1−tanα
=tan2αtanα−1−cotαtanα−1
=tan2−1tanαtanα−1
=tan3α−1(tanα)(tanα−1)
=(tanα−1)(tan2α+tanα+1)(tanα)(tanα−1)
=tan2α+tanα+1tanα
=tanα+1+cotα
=sinαcosα+cosαsinα+1
=sin2α+cos2αcosαsinα+1
=1cosαsinα+1
=secαcscα+1
Hence answer is C
We know that
sec2β−tan2β=1
Therefore
tanβ=±√sec2β−1
tanβ=±√α2+(14α)2+12−1
tanβ=±√α2+(14α)2−12
tanβ=±√(α−14α)2
tanβ=±(α−14α) ...(i)
Hence secα+tanα=2αor12α
The answer is B
cosx+cos2x+cos3x+cos4x+cos5x=5 we know, cosx,cos2x,cos3x,cos4x,cos5x≤1 considering both, cosx,cos2x,cos3x,cos4x,cos5x=1 hence general solutions in the given interval are, cosx=1⇒x=0,2π cos2x=1⇒2x=0,2π,4π⇒x=0,π,2π cos3x=1⇒3x=0,2π,4π,6π⇒x=0,2π3,2π cos4x=1⇒4x=0,2π,4π,6π,8π⇒x=0,π2,π,3π2,2π cos5x=1⇒5x=0,2π,4π,6π,8π,10π⇒x=0,2π5,4π5,6π5,8π5,2π thus common solutions are, x=0,2π Hence, option 'B' is correct.
Please disable the adBlock and continue. Thank you.