The solution set of the equation 4sinθ−2cosθ−2√3sinθ+√3=0 in the interval (0,2π) is-
Explanation
Simplifying \sin 3x = \cos 2x.
\sin 3x = \cos 2x
3\sin x - 4{\sin ^3}x = 1 - 2{\sin ^2}x
4{\sin ^3}x - 2{\sin ^2}x - 3\sin x + 1 = 0
Put \sin x = t.
4{t^3} - 2{t^2} - 3t + 1 = 0
\left( {t - 1} \right)\left( {4{t^2} + 2t - 1} \right) = 0
t = 1
Or,
4{t^2} + 2t - 1 = 0
t = \frac{{ - 2 \pm \sqrt {{{\left( 2 \right)}^2} - 4\left( 4 \right)\left( { - 1} \right)} }}{{2 \times 4}}
= \frac{{ - 2 \pm \sqrt {20} }}{8}
= \frac{{ - 2 \pm 2\sqrt 5 }}{8}
= \frac{{ - 1 \pm \sqrt 5 }}{4}
Then,
\sin x = 1
x = \frac{\pi }{2}
\sin x = \frac{{ - 1 \pm \sqrt 5 }}{4}
\sin x = \frac{{ - 1 + \sqrt 5 }}{4}
x = \pi + \frac{\pi }{{10}}
x = \frac{{11\pi }}{{10}}
\sin x = \frac{{ - 1 - \sqrt 5 }}{4}
x = 2\pi - \frac{\pi }{{10}}
x = \frac{{19\pi }}{{10}}
So, x = \frac{\pi }{2}, x = \frac{{11\pi }}{{10}} and x = \frac{{19\pi }}{{10}}.
Since the given interval is \left( {\frac{\pi }{2},\pi } \right), then, x = \frac{\pi }{2} is the only solution.
Therefore, the number of solutions of \sin 3x = \cos 2x is 1.
Please disable the adBlock and continue. Thank you.