Processing math: 2%

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 15 - MCQExams.com

The solution set of the equation 4sinθ2cosθ23sinθ+3=0 in the interval (0,2π) is-

  • {3π4,7π4}
  • {π3,5π3}
  • {3π4,7π4,π3,5π3}
  • {π6,5π6,11π6}
If \sin \theta +\cos \theta =1, then the value of \sin 2\theta is equal to:
  • 1
  • \dfrac{1}{2}
  • 0
  • -1
The least value of a for which the expression f(x)=\cfrac{4}{\sin x}+\cfrac{1}{1-\sin x}=a^{2} has at least one solution on the interval (0,\quad \pi /2) is 
  • 3
  • 2
  • -3
  • 1
If  x=\frac{{2\left( {\sin {1^o} + \sin {2^o} + \sin {3^o} + .... + \sin {{89}^o}} \right)}}{{2\left( {\cos {1^o} + \cos {2^o} + ..... + \cos {{44}^o}} \right) + 1}}, then the value of {\log _x}2 is equal 
  • 1
  • 2
  • 1/2
  • 4
Total number of solutions of \sin^{2}x-\sin x-1=0 in [-2\pi, 2\pi] is equal to:
  • 2
  • 4
  • 6
  • 8
The number of solution of \sin 3x=\cos 2x in the interval \left(\dfrac{\pi}{2},\pi\right) is :
  • 1
  • 2
  • 3
  • 4
If x\in \left[ 0,\dfrac { \pi  }{ 2 }  \right] , the number of solutions of the equation, \sin { 7x } +\sin { 4x } +\sin { x=0 } is
  • 3
  • 5
  • 6
  • None
If \sin B=\dfrac {1}{5}\sin (2A+B), then \dfrac {\tan (A+B)}{\tan A} is equal to
  • \dfrac53
  • \dfrac23
  • \dfrac32
  • \dfrac35
Find the general solution of x \cos^2 2x+\cos^2 3x=1
  • (2k+1)\dfrac{\pi}{10},k \in I
  • (\pi+1)\dfrac{\pi}{10};k \in I
  • (2k-1)\dfrac{\pi}{10},k\in I
  • Both (A) and (C)
The solution set of equation
4\sin{\theta}\cos{\theta}-2\cos{\theta}-2\sqrt{3}\sin{\theta}+\sqrt{3}=0 in the interval (0, 2\pi)
  • \left\{ \dfrac { 3\pi }{ 4 } ,\dfrac { 7\pi }{ 4 } \right\}
  • \left\{ \dfrac { \pi }{ 3 } ,\dfrac { 5\pi }{ 3 } \right\}
  • \left\{ \dfrac { \pi }{ 6 } ,\dfrac { 5\pi }{ 6 } ,\dfrac{11\pi}{6}\right\}
  • None of these
Find the principal solution of the following equation:
\tan { x=\sqrt { 3 }  }
  • x=\dfrac{\pi}{3} and x=\dfrac{4}{3}\pi 
  • x=\dfrac{\pi}{2} and x=\dfrac{1}{3}\pi 
  • x=\dfrac{\pi}{4} and x=\dfrac{2}{3}\pi 
  • x={3} and x=\dfrac{4}{3}\pi 
If \dfrac{\sin^4x}{2}+\dfrac{\cos^4x}{3}=\dfrac{1}{5}, then
  • \tan^2x=\dfrac{2}{3}
  • \dfrac{\sin^8x}{8}+\dfrac{\cos^8x}{27}=\dfrac{1}{125}
  • \tan^2x=\dfrac{1}{3}
  • \dfrac{\sin^8x}{8}+\dfrac{\cos^8x}{27}=\dfrac{2}{125}
The value of \quad ({ tan }^{ 2 }\cfrac { \pi  }{ 7 } +{ tan }^{ 2 }\cfrac { 2\pi  }{ 7 } +{ tan }^{ 2 }\cfrac { 3\pi  }{ 7 } ) x ({ cot }^{ 2 }\cfrac { \pi  }{ 7 } +cot^{ 2 }\cfrac { 2\pi  }{ 7 } +{ cot }^{ 2 }\cfrac { 3\pi  }{ 7 } ) is
  • 105
  • 35
  • 210
  • None of these
The number of real solutions x of the equation \cos ^ { 2 } ( x \sin ( 2 x ) ) + \frac { 1 } { 1 + x ^ { 2 } } - \cos ^ { 2 } x + \sec ^ { 2 } x is
  • 0
  • 1
  • 2
  • infinite
 \dfrac{\cos A}{1- \sin A}=
  • \tan\left(\frac{\pi}{4}+\frac{A}{2}\right)
  • \tan\left(\frac{\pi}{2}+\frac{A}{2}\right)
  • \cot\left(\frac{\pi}{4}+\frac{A}{2}\right)
  • None of these
\dfrac{1}{\text{cosec}\ \theta+\cot\ \theta}-\dfrac{1}{\sin\ \theta}=\dfrac{1}{\sin\ \theta}-\dfrac{1}{\text{cosec}\ \theta-\cot\ \theta}
  • True
  • False
General solution of {\sin ^3}x + {\cos ^3}x + \frac{3}{2}\sin 2x = 1
  • x = n\pi when n is even integer
  • x = 2n\pi when n is odd integer
  • x = n\pi + \frac{\pi }{2} when n is odd integer
  • x = n\pi - \frac{\pi }{2}
The number of solution of \sec x \cos 5x+1=0 in the interval [0,2\pi] is
  • 5
  • 8
  • 10
  • 12
If 2 \tan ^ { 2 } \theta - 5 \sec \theta = 1 has exactly 7 solutions in the interval \left[ 0 , \dfrac { n \pi } { 2 } \right] , n \in N then the least and  greatest values of n are 
  • 6 , 8
  • 12 , 14
  • 13 , 15
  • 15 , 17
The value of \sqrt { 3 } \cot 20 ^ { \circ } - 4 \cos 20 ^ { \circ } = __________________________.
  • 1
  • -1
  • 0
  • none of these
If in a triangle ABC, \dfrac{b+c}{11}=\dfrac{c+a}{12}=\dfrac{a+b}{13}, then \cos A is equal to:
  • \dfrac{19}{35}
  • \dfrac{5}{7}
  • \dfrac{1}{5}
  • \dfrac{35}{19}
The number of real solutions of the equation \sin \left( e ^ { x } \right) = 5 ^ { x } + 5 ^ { - x } is ____________________.
  • 0
  • 1
  • 2
  • infinite
The value of \sin \dfrac {2\pi}{7}+\sin \dfrac {4\pi}{7}+\sin \dfrac {8\pi}{7} is
  • 1
  • \dfrac {\sqrt {7}}{2}
  • \dfrac {3\sqrt {3}}{4}
  • \dfrac {\sqrt {15}}{4}
The value of \tan\theta+\sec\theta is equal to
  • 3t
  • t
  • t-t^{2}
  • t^{2}-2t
If \tan^{2}\alpha-\tan^{2}\beta-\dfrac{1}{2}\sin(\alpha-\beta)\sec^{2}\alpha\sec^{2}\beta is zero then value of \sin(\alpha+\beta) is (\alpha\neq\beta)
  • 1
  • \dfrac{1}{3}
  • \dfrac{1}{4}
  • \dfrac{1}{2}
The value of \sin{\left(\alpha+\beta\right)} is 
  • \dfrac{24}{25}
  • \dfrac{12}{13}
  • \dfrac{1}{25}
  • None\ of\ these
In a \triangle ABC, \sum a \cos A=4 \sin A \sin B \sin C, then value of \left(\dfrac{\sum \sin A}{\sum a}\right)^{2} is-
  • \dfrac{1}{4}
  • \dfrac{1}{2}
  • 1
  • \dfrac{1}{3}
sin\left( { 4tan }^{ -1 }{ \cfrac { 1 }{ 3 }  } \right) =
  • \frac { 12 }{ 25 }
  • \frac { 24 }{ 25 }
  • \frac { 1 }{ 5 }
  • none of these
If 0 < \phi < \dfrac {\pi}{2} and if \displaystyle x=\sum^{\alpha}_{n=0}\cos^{2}\phi:y=\sum^{\alpha}_{n=0}\sin^{2n}\phi then 
  • x^{2}+y^{2}=1
  • x^{2}-y^{2}=1
  • x+y=xy
  • \dfrac {1}{x}+\dfrac {1}{y}=1
If { tan }^{ 2 }\theta +{ cot }^{ 2 }\theta =\frac { a }{ b-cos4\theta  } +c (where defined) is satisfied for all \theta , then the value of (a + b + c) is equal to (a,b,c\in I)
  • 6
  • 7
  • 8
  • 9
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers