Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 2 - MCQExams.com

The value of sec2Atan2Btan2Asec2B is
  • tan2Btan2A
  • sec2B+sec2A
  • tan2Bsec2A
  • sec2Btan2A
Which of the following is the principal value of cos1(12)?
  • π3
  • π6
  • 2π3
  • 3π3
If cosx=b, then for what b do the roots of the equation form an AP ?
  • 1
  • 12
  • 32
  • None of these
 The principle solutions of \sin \theta  =  - \frac{1}{2} are
  • \pi /4
  • 11\pi /6
  • \pi /3
  • \frac{{7\pi }}{6}
\sin A(1+\tan A) + \cos A(1+\cot A) = \sec A + \text{cosec} A.
  • True
  • False
\dfrac{\cos(90-A)\sin(90-A)}{\tan (90-A)}=
  • \sin^{2}A
  • \cos^{2}A
  • \sin A
  • 1
The principle solution of the Cos\theta  =  - \frac{1}{2} is 
  • 2\pi /3
  • \pi /6
  • 4\pi /3
  • \frac{{7\pi }}{6}
\sec^{2} A+ \csc^{2} A=\sec^{2} A \csc^{2} A
  • True
  • False
What is the value of \cfrac{\tan{A}-\sin{A}}{\sin^3{A}}?
  • \cfrac{\sec{A}}{1-\cos{A}}
  • \cfrac{\sec{A}}{1+\cos^2{A}}
  • \cfrac{\sec{A}}{1+\cos{A}}
  • None of these
The principle solution of equation \cot x =  - \sqrt 3 is 
  • \dfrac{\pi }{3}
  • \dfrac{2\pi }{3}
  • \dfrac{\pi }{6}
  • \dfrac{5\pi }{6}
The range of the function f(x)=\left (\cos ^2x+4\sec ^2x\right ) is
  • [4,\infty )
  • [0,\infty )
  • [5,\infty )
  • (0,\infty )
\displaystyle 1^c =?
  • \displaystyle 56^027'22''
  • \displaystyle 57^016'22''
  • \displaystyle 55^018'32''
  • \displaystyle 57^026'32''
If tan \theta =\dfrac{1}{\sqrt{5}} and \theta lies in the first quadrant, the value of \cos\theta is
  • \dfrac{1}{\sqrt{6}}
  • \dfrac{\sqrt{5}}{\sqrt{6}}
  • \dfrac{-1}{\sqrt{6}}
  •  \dfrac{-\sqrt{5}}{\sqrt{6}}
If 0^0 < x < 45^0, then consider the following statements :

Assertion (A):

\dfrac{1}{1+sin^{2} x}-\dfrac{1}{1+sec^{2} x}\neq \dfrac{1}{1+cos^{2} x}-\dfrac{1}{1+cosec^{2}x}

Reason (R) : sin x \neq cos x

of these statements :
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true, but R is not the correct explanation of A.
  • A is true, but R is false.
  • A is false, but R is true.
1) Principal value of \cos\theta=-1 is \pi
2) Principal value of \sin\theta=0 is \pi
Which of the above statement is correct?
  • Only I
  • Only II
  • Both I and II
  • Neither I or II
Let n be a positive integer such that
\displaystyle \sin(\frac{\pi}{2^{n}})+\cos(\frac{\pi}{2^{n}})=\frac{\sqrt{n}}{2} 

  • <4
  • n>8
  • 4\leq n<8
  • 6\leq n\leq 8

If \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3} are the principal values of following trigonometric equations
1)\sin\theta=-\dfrac 1{\sqrt{2}}
2)\displaystyle \cos\theta=-\frac{\sqrt{3}}{2}
3)\tan\theta=\sqrt{3}-2
  • p_{1}< p_{2}< p_{3}
  • p_{1}< p_{3}< p_{2}
  • p_{3}< p_{1}< p_{2}
  • p_{2}< p_{3}< p_{1}

The number of solutions of the equation 8{\tan ^2}\theta  + 9 = 6\sec \theta in the interval (\frac{-\pi}{2}, \frac{\pi}{2})

  • Two
  • Four
  • Zero
  • None of these
lf \alpha and \beta are two different solutions lying between \displaystyle \frac{-\pi}{2} and \displaystyle \frac{\pi}{2} of the equation 2t\mathrm{a}n\theta+\mathrm{S}\mathrm{e}\mathrm{c}\theta=2 then t\mathrm{a}n\alpha+t\mathrm{a}n\beta 
  • 0
  • 1
  • 4/3
  • 8/3
For all values of \theta,\cos\theta.\text{cosec }\theta\sqrt{\sec^2\theta-1} is
  • 1
  • \cos^2\theta
  • \cot\theta
  • \tan\theta
If sec \theta - tan \theta=k, then the value of sec \theta + tan \theta is
  • (1 - k)
  • (1+k)
  • \dfrac{1}{k}
  • 1-\dfrac{1}{k}
Which of the following is/are FALSE   \forall \theta \in R?
  • \sin \theta =1 - \cos \theta
  • \sec \theta - \tan \theta =\dfrac{1}{\sec \theta + \tan \theta}
  • \tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta
  • \sin \dfrac{\pi}{3}=\cos\dfrac{\pi}{6}
If \tan\theta=\dfrac{3}{4} and 0< \theta, < 90^0, then the value of \sin\theta \cos \theta is
  • \dfrac{1}{5}
  • \dfrac{9}{5}
  • \dfrac{12}{25}
  • \dfrac{25}{12}
\dfrac{3-4 \sin^2 \theta}{\cos^2 \theta} is equal to
  • 3 - \cot^2 \theta
  • 3 + \cot^2 \theta
  • 3 - \tan^2 \theta
  • 3+ \tan^2 \theta
The value of (\cos \theta + \sin \theta)^2 + (\cos \theta - \sin \theta)^2 is
  • 0
  • 1
  • 2
  • 3
\dfrac{\tan^{2}\theta}{(1+\sec \theta)^{2}} is equal to
  • \left ( \dfrac{1-\cos \theta}{1+\cos \theta} \right )
  • \left ( \dfrac{1+\cos \theta}{1-\cos \theta} \right )
  • \left ( \dfrac{\cos \theta-1}{\cos \theta+1} \right )
  • \left ( \dfrac{\cos \theta+1}{\cos \theta-1} \right )
\sec^2 \theta +\text{cosec}^2 \theta is equal to
  • \sec^2 \theta. \cot^2 \theta
  • \sec^2\theta. \tan^2 \theta
  • \text{cosec}^2 \theta. \cot^2 \theta
  • \sec^2 \theta. \text{cosec}^2 \theta
The expression \sin^6 \theta+\sin^4 \theta \cos^2 \theta - \sin^2 \theta \cos^4 \theta - \cos^6 \theta can be reduced to
  • \sin^2 \theta + \cos^2 \theta
  • \sin^3 \theta - \cos^3 \theta
  • \sin^4 \theta + \cos^4 \theta
  • \sin^2 \theta -\cos^2 \theta
Which of the following statements is not correct? 
  • cos^4 \theta sin^4 \theta - cos^2 \theta - sin^2 \theta
  • 1+tan^2 \theta = sec^2 \theta
  • sin 40^0 + cos50^0 = 2 sin 40^0
  • sin^2 \theta + cos^2 \theta=2
The value of \cos^4\theta-\sin^4 \theta+2 \sin^2 \theta is equal to 
  • 0
  • \sin^2 \theta
  • \cos^2\theta
  • 1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers