Explanation
$$\left(\sin(\cfrac{\pi}{2^n})+\cos(\cfrac{\pi}{2^n})\right)^2=\dfrac{n}{2}$$
$$1+2\sin \cfrac{\pi}{2^n}\cos\cfrac{\pi}{2^n}=\dfrac{n}{4}$$......$$[\cos^{2}\theta +\sin^{2}\theta =1]$$
$$\displaystyle \Rightarrow 1+\sin \cfrac{\pi }{2^{n-1}}=\cfrac{n}{4}$$
$$\displaystyle \sin(\cfrac{\pi }{2^{n-1}})=\cfrac{n-4}{4}$$ AS $$n=+ve. \neq 1$$ and $$\sin\theta\le 1$$$$\displaystyle 0 < \cfrac{n-4}{4} \leq 1$$ $$\therefore 4 < n \leq 8$$
The number of solutions of the equation $$8{\tan ^2}\theta + 9 = 6\sec \theta $$ in the interval $$(\frac{-\pi}{2}, \frac{\pi}{2})$$
$$ { \sin }^{ 6 }\theta +{ \sin }^{ 4 }\theta { \cos }^{ 2 }\theta -{ \sin }^{ 2 }\theta { \cos }^{ 4 }\theta -{ \cos }^{ 6 }\theta$$
$$={ \sin }^{ 4 }\theta ({ \sin }^{ 2 }\theta +{\cos }^{ 2 }\theta )-{ \cos }^{ 4 }\theta ({ \sin }^{ 2 }\theta+{\cos }^{ 2 }\theta )$$
$$={ \sin }^{ 4 }\theta -{ \cos }^{ 4 }\theta \left[ \because { \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta =1 \right]$$
$$=({ \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta ) ({ \sin }^{ 2 }\theta -{ \cos }^{ 2 }\theta )$$
$$={ \sin }^{ 2 }\theta -{ \cos }^{ 2 }\theta$$
Hence, option $$D$$ is the correct answer.
Please disable the adBlock and continue. Thank you.