Explanation
\left(\sin(\cfrac{\pi}{2^n})+\cos(\cfrac{\pi}{2^n})\right)^2=\dfrac{n}{2}
1+2\sin \cfrac{\pi}{2^n}\cos\cfrac{\pi}{2^n}=\dfrac{n}{4}......[\cos^{2}\theta +\sin^{2}\theta =1]
\displaystyle \Rightarrow 1+\sin \cfrac{\pi }{2^{n-1}}=\cfrac{n}{4}
\displaystyle \sin(\cfrac{\pi }{2^{n-1}})=\cfrac{n-4}{4} AS n=+ve. \neq 1 and \sin\theta\le 1\displaystyle 0 < \cfrac{n-4}{4} \leq 1 \therefore 4 < n \leq 8
The number of solutions of the equation 8{\tan ^2}\theta + 9 = 6\sec \theta in the interval (\frac{-\pi}{2}, \frac{\pi}{2})
{ \sin }^{ 6 }\theta +{ \sin }^{ 4 }\theta { \cos }^{ 2 }\theta -{ \sin }^{ 2 }\theta { \cos }^{ 4 }\theta -{ \cos }^{ 6 }\theta
={ \sin }^{ 4 }\theta ({ \sin }^{ 2 }\theta +{\cos }^{ 2 }\theta )-{ \cos }^{ 4 }\theta ({ \sin }^{ 2 }\theta+{\cos }^{ 2 }\theta )
={ \sin }^{ 4 }\theta -{ \cos }^{ 4 }\theta \left[ \because { \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta =1 \right]
=({ \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta ) ({ \sin }^{ 2 }\theta -{ \cos }^{ 2 }\theta )
={ \sin }^{ 2 }\theta -{ \cos }^{ 2 }\theta
Hence, option D is the correct answer.
Please disable the adBlock and continue. Thank you.