CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 3 - MCQExams.com

$$(\text{cosec} \theta - \sin \theta)(\sec \theta - \cos \theta)(\tan \theta + \cot \theta)$$ simplifies to
  • $$0$$
  • $$1$$
  • $$\tan \theta$$
  • $$\cot \theta$$
$$\dfrac{\cos A}{1-\tan A} + \dfrac{\sin A}{1 - \cot A}$$is equal to
  • $$ \sin A - \cos A$$
  • $$ \sin A + \cos A$$
  • $$1 -\cos A$$
  • $$1 - \sin A$$
$$(\cos A + \sin A)^2 - (\cos A - \sin A)^2$$ is equal to
  • $$-1$$
  • $$2$$
  • $$0$$
  • None of the above
If $$\sin$$$$\beta=\dfrac{12}{13},$$then the value of $$\dfrac{13\sin\beta+5 \sec\beta}{5\tan\beta+6 \csc\beta}$$
  • $$0$$
  • $$1$$
  • $$\dfrac{50}{37}$$
  • $$\dfrac{37}{2}$$
Th value of $$(\sin \theta + \csc \theta)^2 + (\cos\theta + \sec \theta)^2 - (\tan^2 \theta+\cot^2 \theta)$$ is

  • $$1$$
  • $$2$$
  • $$6$$
  • $$7$$
If $$\tan \alpha=2\sqrt{2},$$ then the value of $$\dfrac{\tan\alpha}{\dfrac{\sin^{3}\alpha}{\cos\alpha}+\sin\alpha.\cos\alpha}$$ is
  • $$0$$
  • $$2$$
  • $$2\sqrt{2}$$
  • $$1$$
$$(1-\sin^2 \theta)(1+\tan^2 \theta)$$ is equal to
  • $$1$$
  • $$1.5$$
  • $$2$$
  • $$2.5$$
If $$\cos A$$ $$=$$ 2 sin A, find the value of  $$cosec A$$.

  • $$1$$
  • $$_{-}^{+}\sqrt{5}$$
  • $$\dfrac{1}{2}$$
  • $$_{-}^{+}\sqrt{3}$$
The value of $$\sin^6 \theta+\cos^6 \theta+3 \sin^2\theta.\cos^2\theta$$ is

  • $$0$$
  • $$-1$$
  • $$1$$
  • $$2$$
If $$x, y \in [0,2\pi]$$, then total number of ordered pairs $$(x, y)$$ satisfying the equation $$\sin x.\cos y=1$$ is equal to
  • $$1$$
  • $$3$$
  • $$5$$
  • $$7$$
The set of angles between $$0$$ & $$2\pi$$ satisfying the equation $$4 \cos^2\theta -2\sqrt 2 \cos\theta-1=0$$ is-
  • $$\left \{\dfrac {\pi}{12}, \dfrac {5\pi}{12}, \dfrac {19\pi}{12}, \dfrac {23\pi}{12}\right \}$$
  • $$\left \{\dfrac {\pi}{12}, \dfrac {7\pi}{12}, \dfrac {17\pi}{12}, \dfrac {23\pi}{12}\right \}$$
  • $$\left \{\dfrac {5\pi}{12}, \dfrac {13\pi}{12}, \dfrac {19\pi}{12}\right \}$$
  • $$\left \{\dfrac {\pi}{12}, \dfrac {7\pi}{12}, \dfrac {19\pi}{12}, \dfrac {23\pi}{12}\right \}$$
Number of values of $$\theta \epsilon [0, 2\pi]$$ satisfying the equation $$\cot x-\cos x=1-\cot x.\cos x$$
  • 1
  • 2
  • 3
  • 4
If $$\alpha + \beta =90^0$$ and $$\alpha = 2\beta,$$ then $$\cos^2 \alpha + \sin^2 \beta$$ equals to
  • $$\dfrac{1}{2}$$
  • $$0$$
  • $$1$$
  • $$2$$
Which of the following relations is/are an identity?
  • $$\displaystyle \sin x^2=2 \sin\displaystyle \dfrac {x^2}{2} \cos \displaystyle \dfrac {x^2}{2}$$
  • $$\displaystyle \sin x=\dfrac {2 \tan\displaystyle \dfrac {x}{2}}{1+\tan^2\displaystyle \dfrac {x}{2}}$$
  • $$\log xy=\log |x| + \log |y|$$
  • $$\sqrt {1-\sin^2x}=\cos x$$
Total number of solution of $$\sin x=x+\dfrac {1}{x} x\epsilon (0, 2\pi)$$, is equal to-
  • $$1$$
  • $$0$$
  • $$3$$
  • $$2$$
The number of solutions of the equation $$x^3+2x^2+5x+2 cos x=0$$ in $$[0, 2\pi]$$ is:
  • 0
  • 1
  • 2
  • 3
For each integer $$n>1$$, let $$S(n)$$ denote the number of solution of the equation $$\sin x=\sin nx$$ on the interval $$[0,\pi]$$ Find the value of $$S(2)+S(3)+S(4)$$.
  • 12
  • 11
  • 15
  • 10
If $$0\leq x\leq 2\pi $$, $$0\leq y\leq 2\pi $$ and $$\sin x+\sin y=2$$ then the value of $$x+y$$ is
  • $$\pi $$
  • $$\dfrac{\pi }{2}$$
  • $$3\pi $$
  • none of these
The smallest positive integral value of p for which the equation $$\cos \left ( p\sin x \right )=\sin \left ( p\cos x \right )$$ in x has a solution in $$\left [ 0, 2\pi  \right ]$$ is
  • 2
  • 1
  • 3
  • none of these
The number of solutions of equation $$5\sec \theta-13=12\tan \theta $$ in $$\left [ 0, 2\pi  \right ]$$ is
  • 2
  • 1
  • 4
  • 0
If $$3\sin ^{2}\theta +2\sin ^{2}\phi=0 $$ and $$3\sin 2\theta +2\sin 2\phi=0$$, $$0< \theta < \frac{\pi }{2}$$ and $$0< \phi  < \frac{\pi }{2}$$, then the value of $$\theta +2\phi $$
  • $$\dfrac{\pi }{2}$$
  • $$\dfrac{\pi }{4}$$
  • $$0$$
  • none of these
If $$\sin \theta = a $$ for exactly one value of $$\displaystyle \:\theta \in \left [ 0,\frac{7\pi }{3} \right ]$$ then the value of a is
  • $$\displaystyle \:\frac{\sqrt{3}}{2}$$
  • 1
  • 0
  • -1
if $$\displaystyle x,y\epsilon \left [ 0,2\pi  \right ]$$ and $$\displaystyle \sin x+\sin y=2$$ then the value of $$ x+y$$ is
  • $$\displaystyle \pi $$
  • $$\displaystyle \frac{\pi}{2} $$
  • $$\displaystyle3 \pi $$
  • None of these
The number of solutions of the equation $$\displaystyle  \cos 6x+\tan ^{2}x+\cos 6x\cdot \tan ^{2}x= 1$$ in the interval $$\displaystyle \left [ 0 ,2\pi  \right ]$$ is
  • 4
  • 5
  • 6
  • 7
The number of solutions of the equation $$\tan x+\sec x=2\cos x$$ lying in the interval $$\left [ 0, 2\pi  \right ]$$ is
  • 0
  • 1
  • 2
  • 3
The number of real solutions of the equation $$\displaystyle \cos ^{7}x+\sin ^{5}x=1, 0\leq x\leq 2\pi $$, is
  • $$1$$
  • $$2$$
  • $$3$$
  • infinite
The total number of solutions of $$\displaystyle \cos x=\sqrt{1-\sin 2x} $$ in $$\displaystyle \left [ 0,2\pi  \right ]$$ is equal to
  • 2
  • 3
  • 5
  • None of these
If $$\sin \:2 \theta= \cos \:3\theta .$$ The number of elements for the set $$\theta$$ in $$0\leq  \theta \leq 2\pi .$$
  • 2
  • 5
  • 6
  • 12
Find the value of $$x$$ for which $$f\left ( x \right )=\sqrt{\sin x-\cos x}$$ is defined, $$x\epsilon \left [ 0, 2\pi  \right ]$$

  • $$\displaystyle x\epsilon \left [ \frac{\pi }{8}, \frac{5\pi }{8} \right ]$$
  • $$\displaystyle x\epsilon \left [ \frac{\pi }{4}, \frac{3\pi }{4} \right ]$$
  • $$\displaystyle x\epsilon \left [ \frac{\pi }{6}, \frac{5\pi }{6} \right ]$$
  • $$\displaystyle x\epsilon \left [ \frac{\pi }{4}, \frac{5\pi }{4} \right ]$$
  • if both the statements are TRUE and STATEMENT 2 is the correct explanation of STATEMENT 1
  • if both the statements are TRUE and STATEMENT 2 is NOT the correct explanation of STATEMENT 1
  • if STATEMENT 1 is TRUE and STATEMENT 2 is FALSE
  • if STATEMENT 1 is FALSE and STATEMENT 2 is TRUE
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers