MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 4 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 4
Given $$\sin A\, =\, \displaystyle \dfrac{3}{5}$$ and
$$\tan A$$ is $$\displaystyle \frac{3}{m}$$, then $$m$$ is:
Report Question
0%
$$1$$
0%
$$2$$
0%
$$4$$
0%
$$3$$
Explanation
Given $$\sin A = \dfrac{3}{5}$$
$$\sin A =\dfrac{P}{B} = \dfrac{3}{5}$$
Thus, $$P = 3, H = 5$$
By Pythagoras Theorem,
$$H^2 = P^2 + B^2$$
$$5^2 = 3^2 + B^2$$
$$B= 4 $$ cm
Now, $$\tan A = \dfrac{P}{B} = \dfrac{3}{4}$$
Find the smallest positive number p for which the equation $$cos (p sin x) = sin (p cos x)$$ has a solution $$x \varepsilon [0, 2 \pi]$$
Report Question
0%
$$\sqrt{2} \pi/4$$
0%
$$\sqrt{2} \pi/2$$
0%
$$\sqrt{2} \pi$$
0%
$$ \pi/6$$
Explanation
$$\cos { \left( p\sin { x } \right) } =\sin { \left( p\cos { x } \right) } $$
$$\displaystyle \Rightarrow \cos { \left( p\sin { x } \right) } =\cos { \left( \frac { \pi }{ 2 } -p\cos { x } \right) } $$
$$\displaystyle \Rightarrow p\sin { x } =2n\pi \pm \left( \frac { \pi }{ 2 } -p\cos { x } \right) $$
$$\displaystyle \Rightarrow p\sin { x } +p\cos { x } =2n\pi +\frac { \pi }{ 2 } $$ or $$\displaystyle p\sin { x } -p\cos { x } =2n\pi -\frac { \pi }{ 2 } $$
$$\displaystyle \Rightarrow p\sqrt { 2 } \left( \sin { \left( x+\frac { \pi }{ 4 } \right) } \right) =\frac { \left( 4n+1 \right) \pi }{ 2 } $$
Or $$\displaystyle p\sqrt { 2 } \left( \sin { \left( x-\frac { \pi }{ 4 } \right) } \right) =\frac { \left( 4n-1 \right) \pi }{ 2 } \quad $$
As $$\displaystyle -1\le \sin { \left( x+\frac { \pi }{ 4 } \right) } \le 1$$
$$\displaystyle \Rightarrow -p\sqrt { 2 } \le p\sqrt { 2 } \sin { \left( x+\frac { \pi }{ 4 } \right) } \le p\sqrt { 2 } $$
$$\displaystyle \Rightarrow -p\sqrt { 2 } \le \frac { \left( 4n+1 \right) \pi }{ 2 } \le p\sqrt { 2 } $$ ...(1)
And as $$\displaystyle -1\le \sin { \left( x-\frac { \pi }{ 4 } \right) } \le 1$$
$$\displaystyle \Rightarrow -p\sqrt { 2 } \le p\sqrt { 2 } \sin { \left( x-\frac { \pi }{ 4 } \right) } \le p\sqrt { 2 } $$
$$\displaystyle \Rightarrow -p\sqrt { 2 } \le \frac { \left( 4n-1 \right) \pi }{ 2 } \le p\sqrt { 2 } $$ ...(2)
(2) is always a subset of of first, therefore we have to consider only first
It is sufficient to consider $$n\ge 0$$ , because for $$n>0$$, the solution will be same for $$n\ge 0$$
If $$n\ge 0$$ $$\displaystyle -\sqrt { 2 } p\le \frac { \left( 4n+1 \right) \pi }{ 2 } \Rightarrow \frac { \left( 4n+1 \right) \pi }{ 2 } \le \sqrt { 2 } p$$
$$\displaystyle \sqrt { 2 } p\ge \frac { \pi }{ 2 } \Rightarrow p\ge \frac { \pi }{ 2\sqrt { 2 } } =\frac { \pi \sqrt { 2 } }{ 4 } $$
Number of solutions of the equation $$tan x + sec x = 2 cos x$$ lying in the interval $$[0, 2 \pi]$$ is
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
$$ tanx + secx = 2 cosx$$
$$\Rightarrow sinx + 1 = 2 cos^2x \Rightarrow sinx+1=2 - 2 sin^2x$$
$$ \Rightarrow 2 sin^2x + sinx -1 = 0$$
$$ \Rightarrow (2 sinx - 1) (sinx + 1) = 0$$
but $$ sinx = -1\Rightarrow x=\dfrac{3\pi}{2}$$ ...........(1)
$$ sinx = \dfrac{1}{2} = sin\dfrac{\pi}{6}$$
therefore general solution is,
$$ x = n\pi + (-1)^n.\dfrac{\pi}{6}$$
$$ x = ......, \dfrac{\pi}{6}, \dfrac{5\pi}{6}, ......$$ ..........(2)
Therefore, number of solutions in the given interval are $$3$$.
Hence, option 'D' is correct.
The value of $$\sin^215^{\small\circ} + \sin^230^{\small\circ} + \sin^245^{\small\circ} + \sin^260^{\small\circ} + \sin^275^{\small\circ}$$ is
Report Question
0%
$$1$$
0%
$$\displaystyle\frac{3}{2}$$
0%
$$\displaystyle\frac{5}{2}$$
0%
$$3$$
Explanation
$$(\sin^{2}75^{0}+\sin^{2}(15^{0}))+(\sin^{2}30^{0}+\sin^{2}60^{0})+\sin^{2}45^{0}$$
$$=(\cos^{2}15^{0}+\sin^{2}15^{0})+(\cos^{2}60^{0}+\sin^{2}60^{0})+\dfrac{1}{2}$$
$$=1+1+\dfrac{1}{2}$$
$$=2+\dfrac{1}{2}$$
$$=\dfrac{5}{2}$$
Given that $$\tan (A + B) = \dfrac{\tan A + \tan B}{1 - \tan A \tan B}$$ where $$A$$ and $$B$$ are acute angle.
Calculate $$A + B$$ when $$\tan A = \dfrac{1}{2}, \tan B = \dfrac{1}{3}$$.
Report Question
0%
$$A+B =30^{\small\circ}$$
0%
$$A+B = 45^{\small\circ}$$
0%
$$A+B = 60^{\small\circ}$$
0%
$$A+B = 75^{\small\circ}$$
Explanation
Given that $$\tan A = 1/2,\quad \tan B = 1/3$$
$$\tan(A+B) = \displaystyle\frac{\tan A + \tan B}{1-\tan A\tan B}$$
$$\quad = \displaystyle\frac{\displaystyle\frac{1}{2}+\displaystyle\frac{1}{3}}{1-\left(\displaystyle\frac{1}{2}\right)\left(\displaystyle\frac{1}{3}\right)} = \displaystyle\frac{5}{6}\times\displaystyle\frac{6}{5} = 1$$
$$\quad \therefore \tan(A+B) = 1 = \tan45^{\small\circ} \quad \Rightarrow A+B = 45^{\small\circ}$$
If $$A = 60^{\small\circ}\ and\ B = 30^{\small\circ}$$, then verify each of the following:
$$(i)\ \cos(A-B) = \cos A \cos B + \sin A \sin B$$
$$(ii)\cot(A+B) = \displaystyle\frac{\cot A\cot B - 1}{\cot A + \cot B}$$
Report Question
0%
$$(i)\ True$$
$$(ii)\ False$$
0%
$$(i)\ False$$
$$(ii)\ False$$
0%
$$(i)\ True$$
$$(ii)\ True$$
0%
$$(i)\ False$$
$$(ii)\ True$$
Explanation
$$=cos(60^{0}-30^{0})$$
$$=cos(30^{0})$$
$$=\frac{\sqrt{3}}{2}$$
$$=LHS$$
Now
$$RHS$$
$$=cos60^{0}cos30^{0}+sin30^{0}sin60^{0}$$
$$=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}$$
$$=\frac{\sqrt{3}}{2}$$
$$=RHS$$
Hence verified.
$$=cot(60^{0}+30^{0})$$
$$=cot(90^{0})$$
$$=0$$
$$=LHS$$
RHS
$$=\frac{cot60^{0}.cot30^{0}-1}{cot60^{0}+cot30^{0}}$$
$$=\dfrac{1-1}{\frac{1}{\sqrt{3}}+\sqrt{3}}$$
$$=0$$
$$Hence\ verified.$$
Is LHS=RHS?
$$\quad \sqrt{\displaystyle\frac{cosec\theta - 1}{cosec\theta + 1}}+\sqrt{\displaystyle\frac{cosec\theta + 1}{cosec\theta - 1}}=2\cos\theta$$
Say true or false?
Report Question
0%
True
0%
False
0%
Ambiguous
0%
Data insufficient
Explanation
Simplifying the given expression, we get
$$\dfrac{cosec\theta-1+cosec\theta+1}{\sqrt{cosec^{2}\theta-1}}$$
$$=\dfrac{2cosec\theta}{cot\theta}$$
$$=\dfrac{2cosec\theta}{cos\theta.cosec\theta}$$
$$=\dfrac{2}{cos\theta}$$
$$=2sec\theta$$
Evaluate : $$\displaystyle\frac{2\tan30^{\small\circ}}{1-\tan^230^{\small\circ}}$$
Report Question
0%
$$0$$
0%
$$1$$
0%
$$\sqrt2$$
0%
$$\sqrt3$$
Explanation
We know that $$\tan 2A$$ $$=\dfrac{2\tan A}{1-\tan^{2}A}$$
Here $$A=30^{0}$$
Substituting, we get
$$\dfrac{2\tan30^{0}}{1-\tan^{2}30^{0}}$$
$$=\tan(2(30^{0}))$$
$$=\tan(60^{0})$$
$$=\sqrt{3}$$
Is LHS=RHS?
$$\quad \displaystyle\frac{\cos\theta}{1+\sin\theta}+\displaystyle\frac{\cos\theta}{1-\sin\theta}=2cosec\theta$$
Say true or false.
Report Question
0%
Yes
0%
No
0%
Ambiguous
0%
Data insufficient
Explanation
$$\dfrac{cos(\theta)(1-sin\theta+1+sin\theta)}{1-sin^{2}\theta}$$
$$=\dfrac{cos(\theta)(2)}{cos^{2}\theta}$$
$$=\dfrac{2}{cos\theta}$$
$$=2sec\theta$$
If $$\alpha + \beta = 90^{\small\circ}$$ and $$\alpha = 2\beta$$, then $$\cos^2\alpha + \sin^2\beta$$ equal
Report Question
0%
$$1$$
0%
$$0$$
0%
$$\displaystyle\frac{1}{2}$$
0%
$$2$$
Explanation
It is given that
$$\alpha=2\beta$$
Hence
$$\alpha+\beta=90^{0}$$
Substituting, we get
$$3\beta=90^{0}$$
Hence
$$\beta=30^{0}$$
Therefore $$\alpha=60^{0}$$
Hence
$$\sin^{2}\beta+\cos^{2}\alpha$$
$$=\dfrac{1}{2}^{2}+\dfrac{1}{2}^{2}$$
$$=\dfrac{1}{4}+\dfrac{1}{4}$$
$$=\dfrac{1}{2}$$
If $$p\sin x = q$$. If $$x$$ is acute, then $$\displaystyle \sqrt{p^{2}-q^{2}}tan x$$ is equal to
Report Question
0%
$$p$$
0%
$$q$$
0%
$$p q$$
0%
$$p + q$$
Explanation
Given: $$p \sin x = q$$
Now, $$\displaystyle \sqrt{p^{2}-q^{2}}\tan x$$
$$=\sqrt{p^{2}-p^{2}\sin ^{2}x.}\tan \:x$$
$$=\sqrt{p^{2}\left ( 1-\sin ^{2}x \right )}.\tan \:x$$
$$=p\sqrt{\left ( 1-\sin ^{2}x \right )}.\tan \:x\left .....( \because \cos ^{2}\theta +\sin ^{2}\theta =1 \right )$$
$$=P\sqrt{\cos ^{2}x}.\tan \:x$$
$$=p\cos \:x\tan \:x$$
$$=p\sin \:x$$
$$=q$$
$$\displaystyle \left | \tan x \right |=\tan x+\frac{1}{\cos x}(0\leq \times \leq 2\pi)$$ has
Report Question
0%
no solution
0%
one solution
0%
two solutions
0%
three solutions
Explanation
When, $$x \in [0, \frac{\pi}{2}]$$ and $$x \in [\pi, \frac{3\pi}{2}]$$
Thus, $$\tan x > 0$$
hence, $$|\tan x | = \tan x$$
hence, $$\displaystyle \left | \tan x \right |=\tan x+\frac{1}{\cos x}(0\leq \times \leq 2\pi)$$
= $$\displaystyle \tan x =\tan x+\frac{1}{\cos x}$$
= $$\cos x = 1$$
= $$\cos x = \cos 90$$
= $$x = 90^{\circ}$$
But it is not possible since, $$\cos x \ne 0$$ ($$\cos x$$ being the denominator in the equation)
When, $$x \in [\frac{\pi}{2}, \pi ]$$ and $$x \in [\frac{3\pi}{2}, 2\pi]$$
Thus, $$\tan x < 0$$
hence, $$|\tan x | = - \tan x$$
hence, $$\displaystyle \left | \tan x \right |=\tan x+\frac{1}{\cos x}$$
= $$2 \tan x = \frac{1}{\cos x}$$
= $$\sin x = \frac{1}{2}$$
This is not possible, as $$\sin x$$ is not positive in these intervals of value of $$x$$
Hence, the equation has no solution for any value of x.
If $$8 \tan A = 15$$, then the value of $$\displaystyle \frac{\sin A -\cos A}{\sin A+\cos A}$$ is:
Report Question
0%
$$\displaystyle \frac{7}{23}$$
0%
$$\displaystyle \frac{11}{23}$$
0%
$$\displaystyle \frac{13}{23}$$
0%
$$\displaystyle \frac{17}{23}$$
Explanation
$$\displaystyle 8\tan A=15 \Rightarrow \tan A=\frac{15}{8}$$
Now, $$\dfrac{\sin A-\cos A}{\sin A+\cos A}$$
Multiply and divide by $$\cos A$$
$$=\dfrac{{\dfrac{\sin A}{\cos A}}-\dfrac{\cos A}{\cos A}}{{\dfrac{\sin A}{\cos A}}+\dfrac{\cos A}{\cos A}}$$
$$=\dfrac{\tan A-1}{\tan A+1}$$
Now, substitute the value of $$\displaystyle \tan A$$
$$= \dfrac{\dfrac{15}{8} -1}{\dfrac{15}{8}+1}$$
$$= \dfrac{7}{23}$$
The number of solutions of the equation $$\displaystyle\frac { \sec { x } }{ 1 - \cos { x } } = \displaystyle\dfrac { 1 }{ 1 - \cos { x } } $$ in $$\left[ 0, 2\pi \right] $$ is equal to
Report Question
0%
3
0%
2
0%
1
0%
0
Explanation
$$\displaystyle\frac { \sec { x } }{ 1-\cos { x } } =\frac { 1 }{ 1-\cos { x } } $$
For $$1-\cos { x } \neq 0\Rightarrow \cos { x } \neq 1$$ ..(1)
Gives $$\sec { x } =1\Rightarrow \cos { x } =1$$ ...(2)
From (1) and (2) we get no solution.
If $$x=2\sin ^{ 2 }{ \theta } $$, $$y=2\cos ^{ 2 }{ \theta } +1$$, then the value of $$x+y$$ is:
Report Question
0%
$$2$$
0%
$$3$$
0%
$$\cfrac{1}{2}$$
0%
$$1$$
Explanation
Given, $$x=2{ \sin }^{ 2 }\theta ,y=2{ \cos }^{ 2 }\theta +1$$
To find: $$(x+y)$$
$$x+y=2{ \sin }^{ 2 }\theta +2{ \cos }^{ 2 }\theta +1$$
$$=2({ \sin }^{ 2 }\theta +{ \cos }^{ 2 }\theta )+1$$ .....(As $$\sin^2\theta +\cos ^2\theta=1$$)
$$ =2+1$$
$$=3$$
The solution set of $$(5+4\,cos\,\theta)\;(2\,cos\,\theta+1)=0$$ in the interval $$[0,2\pi]$$ is
Report Question
0%
$$\begin{Bmatrix}\displaystyle\frac{\pi}{3},\displaystyle\frac{2\pi}{3}\end{Bmatrix}$$
0%
$$\begin{Bmatrix}\displaystyle\frac{\pi}{3},{\pi}\end{Bmatrix}$$
0%
$$\begin{Bmatrix}\displaystyle\frac{2\pi}{3},\displaystyle\frac{4\pi}{3}\end{Bmatrix}$$
0%
$$\begin{Bmatrix}\displaystyle\frac{2\pi}{3},\displaystyle\frac{5\pi}{3}\end{Bmatrix}$$
Explanation
$$(5+4\cos\,\theta)\;(2\cos\,\theta+1)=0$$
$$\Rightarrow \cos\,\theta=-\displaystyle\frac{5}{4}$$ (not possible) $$\cos\,\theta=-\displaystyle\frac{1}{2}$$
$$\Rightarrow \cos\theta=-\displaystyle\frac{1}{2}$$
$$\Rightarrow \cos \theta=-\cos {\dfrac{\pi}{3}}=\cos(\pi\pm\dfrac{\pi}{3})$$
$$\Rightarrow \theta=\displaystyle\frac{2\pi}{3},\displaystyle\frac{4\pi}{3}$$ (II and III quad, cosine is negaitve)
Which of the following is / are the value (S) of the expression?
sin A(1+ tan A) + cos A (1+ cot A) ?
1
. sec A + cosec A
2
. 2 cosec A ( sin A + cos A )
3
. tan A + cot A
Select the correct answer using the code given below.
Report Question
0%
1 only
0%
1 and 2 only
0%
2 only
0%
1 and 3 only
Explanation
$$\sin A (1 + \tan A) + \cos A(1 + \cot A)$$
= $$\sin A(1 + \frac{\sin A}{\cos A}) + \cos A (1 + \frac{\sin A}{\cos A})$$
= $$(\sin A + \cos A) (\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A})$$
= $$(\sin A + \cos A) (\frac{\sin^2 A + \cos^2 A}{\sin A + \cos A}$$
= $$\sec A + cosec A$$
Thus, 1 satisfies the given equation.
If $$\displaystyle \sin x+\sin ^{2}x=1$$ then the value of $$\displaystyle \cos ^{2}x+\cos ^{4}x$$ is equal to
Report Question
0%
1
0%
$$\displaystyle \frac{1}{2}$$
0%
$$\displaystyle \frac{1}{3\sqrt{3}}$$
0%
$$\displaystyle \frac{3\sqrt{5}-5}{2}$$
Explanation
Given, $$\sin x + \sin^2 x = 1$$
$$\Rightarrow \sin x = 1 - \sin^2 x$$
$$\Rightarrow \sin x = \cos^2x$$
Hence, $$\cos^2 x + \cos^4x$$ $$=$$ $$\sin x + \sin^2 x$$ $$=$$ $$1$$
....(Given, $$\sin x + \sin^2 x = 1$$)
If $$\displaystyle \cos \theta =\frac{5}{13}$$, where $$\theta $$ being an acute angle, then the value of $$\dfrac{\cos \theta +5\cot \theta }{\text {cosec}\ \theta -\cos \theta }$$ will be
Report Question
0%
$$\displaystyle \frac{169}{109}$$
0%
$$\displaystyle \frac{155}{109}$$
0%
$$\displaystyle \frac{385}{109}$$
0%
$$\displaystyle \frac{95}{109}$$
Explanation
Given, $$\cos\theta=\dfrac{5}{13}$$
Then $$\sin\theta=\dfrac{12}{13}$$
Hence, $$\tan\theta=\dfrac{12}{5}$$ and
$$\text {cosec} \theta=\dfrac{13}{12}$$
Substituting in the equation, we get
$$=\dfrac{\frac{5}{13}+\frac{5.5}{12}}{\frac{13}{12}-\frac{5}{13}}$$
$$=\dfrac{5(12)+25(13)}{13(13)-5(12)}$$
$$=\dfrac{60+300+25}{169-60}$$
$$=\dfrac{385}{109}$$
Without using trigonometric tables evaluate:-
$$\displaystyle \frac{\cos ^{2}20^{\circ}+\cos ^{2}70^{\circ}}{\sec ^{2}50^{\circ}-\cot ^{2}40^{\circ}}+2\: cosec ^{2}58^{\circ}-2\cot 58^{\circ}\tan 32^{\circ}-4\tan 13^{\circ}\tan 37^{\circ}\tan 45^{\circ}\tan 53^{\circ}\tan 77^{\circ}$$
Report Question
0%
1
0%
2
0%
-1
0%
-2
Explanation
$$\dfrac{\cos ^2 20^{\circ}+\cos ^2 70^{\circ}}{\sec ^2 50^{\circ}-\cot ^2 40^{\circ}}+2\csc ^2 58^{\circ}-2\cot 58^{\circ}\tan 32^{\circ}-4\tan 13^{\circ}\tan 37^{\circ}\tan 45^{\circ}\tan 53^{\circ}\tan 77^{\circ}$$
$$=\dfrac{\cos ^2 20^{\circ}+\sin ^2 20^{\circ}}{\sec ^2 50^{\circ}-\tan ^2 50^{\circ}}+2\csc ^2 58^{\circ}-2\cot 58^{\circ}\cot 58^{\circ}-4\tan 13^{\circ}\cot 13^{\circ} \cot 53^{\circ} \tan 53^{\circ} \tan 45^{\circ}$$
$$=\dfrac{1}{1}+2\csc ^2 58^{\circ}-2\cot 58^{\circ}\cot 58^{\circ}-4\times 1\times 1\times 1$$
$$=1+2(\csc ^2 58^{\circ}-\cot ^258^{\circ})-4$$
$$=1+2-4$$
$$=-1$$
$$\displaystyle \frac{\tan ^{2}\theta }{1+\sec \theta }+1$$ equals to
Report Question
0%
$$\displaystyle \tan \theta $$
0%
$$\displaystyle \frac{1}{\cos \theta }$$
0%
$$\displaystyle \sec \theta -1$$
0%
$$\displaystyle \sec \theta +\tan \theta $$
Explanation
$$\displaystyle \frac{\tan ^{2}\theta }{1+\sec \theta }+1=\frac{\sec^2\theta-1 }{1+\sec \theta }+1$$
$$=\dfrac{(\sec\theta+1)(\sec\theta-1) }{1+\sec \theta }+1$$
$$=\sec\theta-1 +1$$
$$=\sec\theta$$
$$=\dfrac1{\cos\theta}$$
Option B is correct.
$$\displaystyle \sqrt{\frac{1-\sin \theta }{1+\sin \theta}}$$ is equal to ............
Report Question
0%
$$\displaystyle cosec\ \theta -\cot \theta $$
0%
$$\displaystyle \tan \theta -\sec \theta $$
0%
$$\displaystyle\sec \theta -\tan \theta $$
0%
$$\displaystyle \cot \theta -cosec\ \theta $$
Explanation
$$\sqrt { \dfrac { 1-\sin { \theta } }{ 1+\sin { \theta } } } $$
$$=\sqrt { \dfrac { \left( 1-\sin { \theta } \right) \left( 1-\sin { \theta } \right) }{ \left( 1+\sin { \theta } \right) \left( 1-\sin { \theta } \right) } } $$
$$=\sqrt { \dfrac { { \left( 1-\sin { \theta } \right) }^{ 2 } }{ 1-\sin ^{ 2 }{ \theta } } } $$
$$=\sqrt { \dfrac { { \left( 1-\sin { \theta } \right) }^{ 2 } }{ \cos ^{ 2 }{ \theta } } } $$
$$=\dfrac { 1-\sin { \theta } }{ \cos { \theta } } $$
$$=\dfrac { 1 }{ \cos { \theta } } -\dfrac { \sin { \theta } }{ \cos { \theta } } $$
$$=\sec { \theta } -\tan { \theta } $$
Hence, the answer is $$\sec { \theta } -\tan { \theta }.$$
The value of $$\displaystyle \frac{(1+\tan ^{2}\theta )}{(1+\cot ^{2}\theta )} $$ is
Report Question
0%
$$\displaystyle \tan ^{2}\theta $$
0%
$$\displaystyle \cot ^{2}\theta $$
0%
$$\displaystyle \sec ^{2}\theta $$
0%
$$\displaystyle \text{cosec } ^{2}\theta $$
Explanation
The value of $$\displaystyle \dfrac {(1+\tan ^{2}\theta )}{(1+\cot ^{2}\theta )}$$ is
$$=\displaystyle \dfrac {\left (1+\frac {\sin ^{2}\theta}{\cos ^{2}\theta} \right)}{\left (1+\frac {\cos ^{2}\theta}{\sin ^{2}\theta} \right)}$$
$$=\displaystyle \dfrac {\left (\frac {\cos ^{2}\theta + \sin ^{2}\theta}{\cos ^{2}\theta} \right)}{\left (\frac {\sin ^{2}\theta + \cos ^{2}\theta}{\sin ^{2}\theta}\right )}$$
$$=\displaystyle \dfrac {\left (\frac {1}{\cos ^{2}\theta}\right )}{\left (\frac {1}{\sin ^{2}\theta} \right)}$$
$$=\displaystyle \frac {\sin ^{2}\theta}{\cos ^{2}\theta}$$
$$=\displaystyle \tan^{2}\theta $$
Hence, option A is correct.
The $$\triangle ABC$$ has a right angle at C. If $$\displaystyle \sin A=\frac{2}{3}$$ then $$\displaystyle \tan B$$ is
Report Question
0%
$$\displaystyle \frac{3}{5}$$
0%
$$\displaystyle \frac{\sqrt{5}}{3}$$
0%
$$\displaystyle \frac{2}{\sqrt{5}}$$
0%
$$\displaystyle \frac{\sqrt{5}}{2}$$
Explanation
$$\Rightarrow \sin { A } =\dfrac { 2 }{ 3 } =\dfrac { BC }{ AB } $$
In right angled $$\triangle ABC,$$
$$\Rightarrow AC^2+BC^2=AB^2$$
$$\Rightarrow AC^2=AB^2-BC^2$$
$$=9-4$$
$$\Rightarrow AC=\sqrt {5}$$
$$\Rightarrow \tan B=\dfrac{AC}{BC}=\dfrac{\sqrt {5}}{2}$$
Hence, the answer is $$\dfrac{\sqrt {5}}{2}.$$
The simplification of $$\displaystyle \sqrt{\frac{1+\cos A}{1-\cos A}}$$ gives
Report Question
0%
$$\displaystyle \text{cosec } A+\cot A$$
0%
$$\displaystyle \text{cosec } A-\cot A$$
0%
$$\displaystyle \frac{1+\cos A}{\sin A}$$
0%
Both A and C.
Explanation
$$\displaystyle \sqrt{\dfrac{1+\cos A}{1-\cos A}}=\sqrt{\dfrac{1+\cos A}{1-\cos A}\times\dfrac{1+\cos A}{1+\cos A}}$$
$$=\displaystyle \dfrac{1+\cos A}{\sqrt{1-\cos ^2 A}}$$
$$=\displaystyle \dfrac{1+\cos A}{\sqrt{\sin^2 A}}$$
$$=\displaystyle \dfrac{1+\cos A}{\sin A}$$ ...(i)
$$=\displaystyle \dfrac{1}{\sin A}+\dfrac{\cos A}{\sin A}$$
$$=\displaystyle \text{cosec} A+\cot A$$ ...(ii)
From (i) and (ii) , Option D is correct.
The expression $$\displaystyle (1-\tan A+\sec A)(1-\cot A+\cos \sec A)$$ has value
Report Question
0%
-1
0%
0
0%
+1
0%
+2
Explanation
$$\displaystyle \left(1-\tan A+\sec A\right)\left(1-\cot A+\text{cosec } A\right) $$
$$=\displaystyle \left(1-\frac {\sin A}{\cos A}+\frac {1}{cos A}\right)\left(1-\frac {\cos A}{\sin A}+\frac {1}{\sin A}\right) $$
$$=\displaystyle \left(\frac {\cos A- \sin A + 1}{\cos A}\right)\left(\frac {\sin A -\cos A + 1}{\sin A}\right) $$
$$=\displaystyle \left(\frac {\cos A- \sin A + 1}{\cos A}\right)\left(\frac {-\left(\cos A - \sin A -1\right)}{\sin A}\right) $$
$$=\displaystyle - \left(\frac {\left(\cos A- \sin A\right) + 1}{\cos A}\right)\left(\frac {\left(\cos A - \sin A\right) -1}{\sin A}\right) $$
$$=\displaystyle - \frac {\left(\cos A- \sin A\right)^2 - 1}{\sin A \cos A} $$
$$=\displaystyle - \frac {\left(\cos^{2} A+ \sin^{2} A- 2\sin A \cos A\right) - 1}{\sin A \cos A} $$
$$=\displaystyle - \frac {\left(1- 2\sin A \cos A\right) - 1}{\sin A \cos A} $$
$$=\displaystyle - \frac {- 2\sin A \cos A }{\sin A \cos A} = 2$$
Option D is correct.
In a right angled $$\displaystyle \Delta ABC$$ right angled at $$B$$ the ratio of $$AB$$ to $$AC$$ is $$\displaystyle 1:\sqrt{5}$$ then $$\displaystyle 3\tan \theta +5\sec ^{2}\theta $$ is
Report Question
0%
$$\displaystyle \frac{2}{\sqrt{5}}$$
0%
$$\displaystyle 3+\sqrt{5}$$
0%
$$\displaystyle \dfrac{25}4+\frac{3}{2}$$
0%
$$\displaystyle \frac{\sqrt{5+1}}{2}$$
Explanation
$$h=\sqrt { 5 } x$$
$$p=x$$
$$b=\sqrt { (\sqrt { 5 } )^ 2-x^ 2 } =\sqrt { 4{ x }^{ 2 } } =2x$$
$$\tan \theta =\dfrac { p }{ b } =\dfrac { 1x }{ 2x } =\dfrac { 1 }{ 2 } $$
$$\sec { \theta } =\dfrac { h }{ b } =\dfrac { \sqrt { 5 } x }{ 2x } =\dfrac { \sqrt { 5 } }{ 2 } $$
$$3\tan \theta +5\sec ^{ 2 }{ \theta =3\times } \dfrac { 1 }{ 2 } +5{ \times \left(\dfrac { \sqrt { 5 } }{ 2 } \right) }^{ 2 }=\dfrac { 3 }{ 2 } +\dfrac { 25 }{ 4 } $$
The value of $$\displaystyle \frac{\sin ^{2}53+\cos ^{2}53}{\sec ^{2}37-\tan ^{2}37 }$$ is
Report Question
0%
$$1$$
0%
$$2$$
0%
$$\displaystyle \frac{1}{4}$$
0%
$$\displaystyle \frac{3}{2}$$
Explanation
Given,
$$\displaystyle \frac{\sin ^{2}53+\cos ^{2}53}{\sec ^{2}37-\tan ^{2}37 }$$
We know,
$$\sin^2 \theta+\cos^2 \theta=1$$ and $$\sec^2 \theta- \tan^2 \theta =1$$
$$\therefore \dfrac{\sin^2 53+ \cos^2 53}{\sec^2 37- \tan^2 37}=1$$
Value of $$(1+\tan {\theta}+\sec {\theta})(1+\cot {\theta}-co\sec {\theta})$$ is:
Report Question
0%
$$1$$
0%
$$-1$$
0%
$$2$$
0%
$$-4$$
Explanation
$$(1+\tan {\theta}+\sec {\theta})(1+\cot {\theta}-co\sec {\theta})$$
$$\left( 1+\cfrac { \sin { \theta } }{ \cos { \theta } } +\cfrac { 1 }{ \cos { \theta } } \right) \left( 1+\cfrac { \cos { \theta } }{ \sin { \theta } } -\cfrac { 1 }{ \sin { \theta } } \right) $$
$$\left( \cfrac { \cos { \theta } +\sin { \theta } +1 }{ \cos { \theta } } \right) \left( \cfrac { \sin { \theta } +\cos { \theta } -1 }{ \sin { \theta } } \right) $$
$$=\cfrac { { \left( \cos { \theta } +\sin { \theta } \right) }^{ 2 }-{ \left( 1 \right) }^{ 2 } }{ \cos { \theta } \sin { \theta } } $$
$$=\cfrac { \cos ^{ 2 }{ \theta } +\sin ^{ 2 }{ \theta } +2\sin { \theta } \cos { \theta } -1 }{ \cos { \theta } \sin { \theta } } $$
$$=\cfrac { 1+2\sin { \theta } \cos { \theta } -1 }{ \cos { \theta } \sin { \theta } } \quad =\cfrac { 2\sin { \theta \cos { \theta } } }{ \cos { \theta } \sin { \theta } } =2$$
If $$\displaystyle \sec \theta =2,$$ evaluating $$\displaystyle \frac{1-\tan \theta }{1+\tan \theta }$$ gives
Report Question
0%
$$\displaystyle -\sqrt{3}$$
0%
$$\displaystyle \sqrt{3}+1$$
0%
$$\displaystyle2 -\sqrt{3}$$
0%
$$\displaystyle\frac{ \sqrt{3}+1}{2}$$
Explanation
we know that, $$\sec^2\theta-\tan^2\theta=1$$
$$\Rightarrow \tan^2\theta=\sec^2\theta-1$$
$$\Rightarrow \tan^2\theta=4-1$$ $$[given\,\sec\theta=2]$$
$$\Rightarrow \tan\theta=\sqrt3$$
Now,$$\displaystyle \dfrac{1-\tan \theta }{1+\tan \theta }=\dfrac{1-\sqrt3}{1+\sqrt3}\times\dfrac{1-\sqrt3}{1-\sqrt3}$$
$$\displaystyle=\frac{1+3-2\sqrt3}{1-3}$$
$$\displaystyle=\frac{4-2\sqrt3}{-2}$$
$$\displaystyle={\sqrt3-2}$$
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
0
Not Answered
0
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page