CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 4 - MCQExams.com

Given $$\sin A\, =\, \displaystyle \dfrac{3}{5}$$ and  $$\tan A$$ is $$\displaystyle \frac{3}{m}$$, then $$m$$ is: 
  • $$1$$
  • $$2$$
  • $$4$$
  • $$3$$
Find the smallest positive number p for which the equation $$cos (p  sin  x) = sin (p  cos  x)$$ has a solution $$x \varepsilon [0, 2 \pi]$$
  • $$\sqrt{2} \pi/4$$
  • $$\sqrt{2} \pi/2$$
  • $$\sqrt{2} \pi$$
  • $$ \pi/6$$
Number of solutions of the equation $$tan x + sec  x = 2 cos  x$$ lying in the interval $$[0, 2 \pi]$$ is
  • 0
  • 1
  • 2
  • 3
The value of $$\sin^215^{\small\circ} + \sin^230^{\small\circ} + \sin^245^{\small\circ} + \sin^260^{\small\circ} + \sin^275^{\small\circ}$$ is
  • $$1$$
  • $$\displaystyle\frac{3}{2}$$
  • $$\displaystyle\frac{5}{2}$$
  • $$3$$
Given that $$\tan (A + B) = \dfrac{\tan A + \tan B}{1 - \tan A \tan B}$$ where $$A$$ and $$B$$ are acute angle.
Calculate $$A + B$$ when $$\tan A = \dfrac{1}{2}, \tan B = \dfrac{1}{3}$$.
  • $$A+B =30^{\small\circ}$$
  • $$A+B = 45^{\small\circ}$$
  • $$A+B = 60^{\small\circ}$$
  • $$A+B = 75^{\small\circ}$$
If $$A = 60^{\small\circ}\ and\ B = 30^{\small\circ}$$, then verify each of the following:
$$(i)\ \cos(A-B) = \cos A \cos B + \sin A \sin B$$
$$(ii)\cot(A+B) = \displaystyle\frac{\cot A\cot B - 1}{\cot A + \cot B}$$
  • $$(i)\ True$$
    $$(ii)\ False$$
  • $$(i)\ False$$
    $$(ii)\ False$$
  • $$(i)\ True$$
    $$(ii)\ True$$
  • $$(i)\ False$$
    $$(ii)\ True$$
Is LHS=RHS?

$$\quad \sqrt{\displaystyle\frac{cosec\theta - 1}{cosec\theta + 1}}+\sqrt{\displaystyle\frac{cosec\theta + 1}{cosec\theta - 1}}=2\cos\theta$$

Say true or false?
  • True
  • False
  • Ambiguous
  • Data insufficient
Evaluate : $$\displaystyle\frac{2\tan30^{\small\circ}}{1-\tan^230^{\small\circ}}$$
  • $$0$$
  • $$1$$
  • $$\sqrt2$$
  • $$\sqrt3$$
Is LHS=RHS?
$$\quad \displaystyle\frac{\cos\theta}{1+\sin\theta}+\displaystyle\frac{\cos\theta}{1-\sin\theta}=2cosec\theta$$
Say true or false.
  • Yes
  • No
  • Ambiguous
  • Data insufficient
If $$\alpha + \beta = 90^{\small\circ}$$ and $$\alpha = 2\beta$$, then $$\cos^2\alpha + \sin^2\beta$$ equal
  • $$1$$
  • $$0$$
  • $$\displaystyle\frac{1}{2}$$
  • $$2$$
If $$p\sin x = q$$. If $$x$$ is acute, then $$\displaystyle \sqrt{p^{2}-q^{2}}tan x$$ is equal to 
  • $$p$$
  • $$q$$
  • $$p q$$
  • $$p + q$$
$$\displaystyle  \left | \tan x \right |=\tan x+\frac{1}{\cos x}(0\leq  \times \leq 2\pi)$$ has 
  • no solution
  • one solution
  • two solutions
  • three solutions
If $$8 \tan A = 15$$, then the value of $$\displaystyle \frac{\sin A -\cos A}{\sin A+\cos A}$$ is:
  • $$\displaystyle \frac{7}{23}$$
  • $$\displaystyle \frac{11}{23}$$
  • $$\displaystyle \frac{13}{23}$$
  • $$\displaystyle \frac{17}{23}$$
The number of solutions of the equation $$\displaystyle\frac { \sec { x }  }{ 1 - \cos { x }  } = \displaystyle\dfrac { 1 }{ 1 - \cos { x }  } $$ in $$\left[ 0, 2\pi  \right] $$ is equal to
  • 3
  • 2
  • 1
  • 0
If $$x=2\sin ^{ 2 }{ \theta  } $$, $$y=2\cos ^{ 2 }{ \theta  } +1$$, then the value of $$x+y$$ is:
  • $$2$$
  • $$3$$
  • $$\cfrac{1}{2}$$
  • $$1$$
The solution set of $$(5+4\,cos\,\theta)\;(2\,cos\,\theta+1)=0$$ in the interval $$[0,2\pi]$$ is
  • $$\begin{Bmatrix}\displaystyle\frac{\pi}{3},\displaystyle\frac{2\pi}{3}\end{Bmatrix}$$
  • $$\begin{Bmatrix}\displaystyle\frac{\pi}{3},{\pi}\end{Bmatrix}$$
  • $$\begin{Bmatrix}\displaystyle\frac{2\pi}{3},\displaystyle\frac{4\pi}{3}\end{Bmatrix}$$
  • $$\begin{Bmatrix}\displaystyle\frac{2\pi}{3},\displaystyle\frac{5\pi}{3}\end{Bmatrix}$$
Which of the following is / are the value (S) of the expression?
sin A(1+ tan A) + cos A (1+ cot A) ?
1. sec A + cosec A
2. 2 cosec A ( sin A + cos A )
3. tan A + cot A 
Select the correct answer using the code given below. 
  • 1 only
  • 1 and 2 only
  • 2 only
  • 1 and 3 only
If $$\displaystyle \sin x+\sin ^{2}x=1$$ then the value of $$\displaystyle \cos ^{2}x+\cos ^{4}x$$ is equal to
  • 1
  • $$\displaystyle \frac{1}{2}$$
  • $$\displaystyle \frac{1}{3\sqrt{3}}$$
  • $$\displaystyle \frac{3\sqrt{5}-5}{2}$$
If $$\displaystyle \cos \theta =\frac{5}{13}$$, where $$\theta $$ being an acute angle, then the value of $$\dfrac{\cos \theta +5\cot \theta }{\text {cosec}\ \theta -\cos \theta }$$ will be 
  • $$\displaystyle \frac{169}{109}$$
  • $$\displaystyle \frac{155}{109}$$
  • $$\displaystyle \frac{385}{109}$$
  • $$\displaystyle \frac{95}{109}$$
Without using trigonometric tables evaluate:-

$$\displaystyle \frac{\cos ^{2}20^{\circ}+\cos ^{2}70^{\circ}}{\sec ^{2}50^{\circ}-\cot ^{2}40^{\circ}}+2\:  cosec ^{2}58^{\circ}-2\cot 58^{\circ}\tan 32^{\circ}-4\tan 13^{\circ}\tan 37^{\circ}\tan 45^{\circ}\tan 53^{\circ}\tan 77^{\circ}$$ 
  • 1
  • 2
  • -1
  • -2
$$\displaystyle \frac{\tan ^{2}\theta }{1+\sec \theta }+1$$ equals to
  • $$\displaystyle \tan \theta $$
  • $$\displaystyle \frac{1}{\cos \theta }$$
  • $$\displaystyle \sec \theta -1$$
  • $$\displaystyle \sec \theta +\tan \theta $$
$$\displaystyle \sqrt{\frac{1-\sin \theta }{1+\sin \theta}}$$ is equal to ............
  • $$\displaystyle cosec\ \theta -\cot \theta $$
  • $$\displaystyle \tan \theta -\sec \theta $$
  • $$\displaystyle\sec \theta -\tan \theta $$
  • $$\displaystyle \cot \theta -cosec\ \theta $$
The value of $$\displaystyle \frac{(1+\tan ^{2}\theta )}{(1+\cot ^{2}\theta )} $$ is
  • $$\displaystyle \tan ^{2}\theta $$
  • $$\displaystyle \cot ^{2}\theta $$
  • $$\displaystyle \sec ^{2}\theta $$
  • $$\displaystyle \text{cosec } ^{2}\theta $$
The $$\triangle ABC$$ has a right angle at C. If $$\displaystyle \sin A=\frac{2}{3}$$ then $$\displaystyle \tan B$$ is
  • $$\displaystyle \frac{3}{5}$$
  • $$\displaystyle \frac{\sqrt{5}}{3}$$
  • $$\displaystyle \frac{2}{\sqrt{5}}$$
  • $$\displaystyle \frac{\sqrt{5}}{2}$$
The simplification of $$\displaystyle \sqrt{\frac{1+\cos A}{1-\cos A}}$$ gives
  • $$\displaystyle \text{cosec } A+\cot A$$
  • $$\displaystyle \text{cosec } A-\cot A$$
  • $$\displaystyle \frac{1+\cos A}{\sin A}$$
  • Both A and C.
The expression $$\displaystyle (1-\tan A+\sec A)(1-\cot A+\cos \sec A)$$ has value 
  • -1
  • 0
  • +1
  • +2
In a right angled $$\displaystyle \Delta ABC$$ right angled at $$B$$ the ratio of $$AB$$ to $$AC$$ is $$\displaystyle  1:\sqrt{5}$$ then $$\displaystyle  3\tan \theta +5\sec ^{2}\theta $$ is
  • $$\displaystyle \frac{2}{\sqrt{5}}$$
  • $$\displaystyle 3+\sqrt{5}$$
  • $$\displaystyle \dfrac{25}4+\frac{3}{2}$$
  • $$\displaystyle \frac{\sqrt{5+1}}{2}$$
The value of $$\displaystyle \frac{\sin ^{2}53+\cos ^{2}53}{\sec ^{2}37-\tan ^{2}37 }$$ is
  • $$1$$
  • $$2$$
  • $$\displaystyle \frac{1}{4}$$
  • $$\displaystyle \frac{3}{2}$$
Value of $$(1+\tan {\theta}+\sec {\theta})(1+\cot {\theta}-co\sec {\theta})$$ is:
  • $$1$$
  • $$-1$$
  • $$2$$
  • $$-4$$
If $$\displaystyle \sec \theta =2,$$ evaluating $$\displaystyle \frac{1-\tan \theta }{1+\tan \theta }$$ gives
  • $$\displaystyle -\sqrt{3}$$
  • $$\displaystyle \sqrt{3}+1$$
  • $$\displaystyle2 -\sqrt{3}$$
  • $$\displaystyle\frac{ \sqrt{3}+1}{2}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers