Processing math: 19%

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 4 - MCQExams.com

Given sinA=35 and  tanA is 3m, then m is: 
  • 1
  • 2
  • 4
  • 3
Find the smallest positive number p for which the equation cos(psinx)=sin(pcosx) has a solution xε[0,2π]
  • 2π/4
  • 2π/2
  • 2π
  • π/6
Number of solutions of the equation tanx+secx=2cosx lying in the interval [0,2π] is
  • 0
  • 1
  • 2
  • 3
The value of sin215+sin230+sin245+sin260+sin275 is
  • 1
  • 32
  • 52
  • 3
Given that tan(A+B)=tanA+tanB1tanAtanB where A and B are acute angle.
Calculate A+B when tanA=12,tanB=13.
  • A+B=30
  • A+B=45
  • A+B=60
  • A+B=75
If A = 60^{\small\circ}\ and\ B = 30^{\small\circ}, then verify each of the following:
(i)\ \cos(A-B) = \cos A \cos B + \sin A \sin B
(ii)\cot(A+B) = \displaystyle\frac{\cot A\cot B - 1}{\cot A + \cot B}
  • (i)\ True
    (ii)\ False
  • (i)\ False
    (ii)\ False
  • (i)\ True
    (ii)\ True
  • (i)\ False
    (ii)\ True
Is LHS=RHS?

\quad \sqrt{\displaystyle\frac{cosec\theta - 1}{cosec\theta + 1}}+\sqrt{\displaystyle\frac{cosec\theta + 1}{cosec\theta - 1}}=2\cos\theta

Say true or false?
  • True
  • False
  • Ambiguous
  • Data insufficient
Evaluate : \displaystyle\frac{2\tan30^{\small\circ}}{1-\tan^230^{\small\circ}}
  • 0
  • 1
  • \sqrt2
  • \sqrt3
Is LHS=RHS?
\quad \displaystyle\frac{\cos\theta}{1+\sin\theta}+\displaystyle\frac{\cos\theta}{1-\sin\theta}=2cosec\theta
Say true or false.
  • Yes
  • No
  • Ambiguous
  • Data insufficient
If \alpha + \beta = 90^{\small\circ} and \alpha = 2\beta, then \cos^2\alpha + \sin^2\beta equal
  • 1
  • 0
  • \displaystyle\frac{1}{2}
  • 2
If p\sin x = q. If x is acute, then \displaystyle \sqrt{p^{2}-q^{2}}tan x is equal to 
  • p
  • q
  • p q
  • p + q
\displaystyle  \left | \tan x \right |=\tan x+\frac{1}{\cos x}(0\leq  \times \leq 2\pi) has 
  • no solution
  • one solution
  • two solutions
  • three solutions
If 8 \tan A = 15, then the value of \displaystyle \frac{\sin A -\cos A}{\sin A+\cos A} is:
  • \displaystyle \frac{7}{23}
  • \displaystyle \frac{11}{23}
  • \displaystyle \frac{13}{23}
  • \displaystyle \frac{17}{23}
The number of solutions of the equation \displaystyle\frac { \sec { x }  }{ 1 - \cos { x }  } = \displaystyle\dfrac { 1 }{ 1 - \cos { x }  } in \left[ 0, 2\pi  \right] is equal to
  • 3
  • 2
  • 1
  • 0
If x=2\sin ^{ 2 }{ \theta  } , y=2\cos ^{ 2 }{ \theta  } +1, then the value of x+y is:
  • 2
  • 3
  • \cfrac{1}{2}
  • 1
The solution set of (5+4\,cos\,\theta)\;(2\,cos\,\theta+1)=0 in the interval [0,2\pi] is
  • \begin{Bmatrix}\displaystyle\frac{\pi}{3},\displaystyle\frac{2\pi}{3}\end{Bmatrix}
  • \begin{Bmatrix}\displaystyle\frac{\pi}{3},{\pi}\end{Bmatrix}
  • \begin{Bmatrix}\displaystyle\frac{2\pi}{3},\displaystyle\frac{4\pi}{3}\end{Bmatrix}
  • \begin{Bmatrix}\displaystyle\frac{2\pi}{3},\displaystyle\frac{5\pi}{3}\end{Bmatrix}
Which of the following is / are the value (S) of the expression?
sin A(1+ tan A) + cos A (1+ cot A) ?
1. sec A + cosec A
2. 2 cosec A ( sin A + cos A )
3. tan A + cot A 
Select the correct answer using the code given below. 
  • 1 only
  • 1 and 2 only
  • 2 only
  • 1 and 3 only
If \displaystyle \sin x+\sin ^{2}x=1 then the value of \displaystyle \cos ^{2}x+\cos ^{4}x is equal to
  • 1
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{3\sqrt{3}}
  • \displaystyle \frac{3\sqrt{5}-5}{2}
If \displaystyle \cos \theta =\frac{5}{13}, where \theta being an acute angle, then the value of \dfrac{\cos \theta +5\cot \theta }{\text {cosec}\ \theta -\cos \theta } will be 
  • \displaystyle \frac{169}{109}
  • \displaystyle \frac{155}{109}
  • \displaystyle \frac{385}{109}
  • \displaystyle \frac{95}{109}
Without using trigonometric tables evaluate:-

\displaystyle \frac{\cos ^{2}20^{\circ}+\cos ^{2}70^{\circ}}{\sec ^{2}50^{\circ}-\cot ^{2}40^{\circ}}+2\:  cosec ^{2}58^{\circ}-2\cot 58^{\circ}\tan 32^{\circ}-4\tan 13^{\circ}\tan 37^{\circ}\tan 45^{\circ}\tan 53^{\circ}\tan 77^{\circ} 
  • 1
  • 2
  • -1
  • -2
\displaystyle \frac{\tan ^{2}\theta }{1+\sec \theta }+1 equals to
  • \displaystyle \tan \theta
  • \displaystyle \frac{1}{\cos \theta }
  • \displaystyle \sec \theta -1
  • \displaystyle \sec \theta +\tan \theta
\displaystyle \sqrt{\frac{1-\sin \theta }{1+\sin \theta}} is equal to ............
  • \displaystyle cosec\ \theta -\cot \theta
  • \displaystyle \tan \theta -\sec \theta
  • \displaystyle\sec \theta -\tan \theta
  • \displaystyle \cot \theta -cosec\ \theta
The value of \displaystyle \frac{(1+\tan ^{2}\theta )}{(1+\cot ^{2}\theta )} is
  • \displaystyle \tan ^{2}\theta
  • \displaystyle \cot ^{2}\theta
  • \displaystyle \sec ^{2}\theta
  • \displaystyle \text{cosec } ^{2}\theta
The \triangle ABC has a right angle at C. If \displaystyle \sin A=\frac{2}{3} then \displaystyle \tan B is
  • \displaystyle \frac{3}{5}
  • \displaystyle \frac{\sqrt{5}}{3}
  • \displaystyle \frac{2}{\sqrt{5}}
  • \displaystyle \frac{\sqrt{5}}{2}
The simplification of \displaystyle \sqrt{\frac{1+\cos A}{1-\cos A}} gives
  • \displaystyle \text{cosec } A+\cot A
  • \displaystyle \text{cosec } A-\cot A
  • \displaystyle \frac{1+\cos A}{\sin A}
  • Both A and C.
The expression \displaystyle (1-\tan A+\sec A)(1-\cot A+\cos \sec A) has value 
  • -1
  • 0
  • +1
  • +2
In a right angled \displaystyle \Delta ABC right angled at B the ratio of AB to AC is \displaystyle  1:\sqrt{5} then \displaystyle  3\tan \theta +5\sec ^{2}\theta is
  • \displaystyle \frac{2}{\sqrt{5}}
  • \displaystyle 3+\sqrt{5}
  • \displaystyle \dfrac{25}4+\frac{3}{2}
  • \displaystyle \frac{\sqrt{5+1}}{2}
The value of \displaystyle \frac{\sin ^{2}53+\cos ^{2}53}{\sec ^{2}37-\tan ^{2}37 } is
  • 1
  • 2
  • \displaystyle \frac{1}{4}
  • \displaystyle \frac{3}{2}
Value of (1+\tan {\theta}+\sec {\theta})(1+\cot {\theta}-co\sec {\theta}) is:
  • 1
  • -1
  • 2
  • -4
If \displaystyle \sec \theta =2, evaluating \displaystyle \frac{1-\tan \theta }{1+\tan \theta } gives
  • \displaystyle -\sqrt{3}
  • \displaystyle \sqrt{3}+1
  • \displaystyle2 -\sqrt{3}
  • \displaystyle\frac{ \sqrt{3}+1}{2}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers