Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 5 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 5
(
sin
θ
+
cos
θ
)
(
1
−
sin
θ
cos
θ
)
can be written as :
Report Question
0%
sin
θ
+
cos
θ
0%
sin
3
θ
−
cos
3
θ
0%
sin
3
θ
+
cos
3
θ
0%
sin
θ
−
cos
θ
Explanation
(
sin
θ
+
cos
θ
)
(
1
−
sin
θ
cos
θ
)
can be written as
(
sin
θ
+
cos
θ
)
(
sin
2
θ
+
cos
2
θ
−
sin
θ
.
cos
θ
)
=
sin
3
θ
+
cos
3
θ
Evaluate
(
sin
A
+
cos
A
)
(
tan
A
+
cot
A
)
Report Question
0%
sin
A
+
cos
A
0%
sec
A
+
c
o
s
e
c
A
0%
sin
A
0%
cos
A
Explanation
The value of
(
sin
A
+
cos
A
)
(
tan
A
+
cot
A
)
is
=
(
sin
A
+
cos
A
)
(
sin
A
cos
A
+
cos
A
sin
A
)
=
(
sin
A
+
cos
A
)
(
sin
2
A
+
cos
2
A
cos
A
sin
A
)
=
sin
A
+
cos
A
cos
A
sin
A
=
sin
A
cos
A
sin
A
+
cos
A
cos
A
sin
A
=
1
cos
A
+
1
sin
A
=
sec
A
+
c
o
s
e
c
A
If
sin
θ
=
cos
(
2
θ
−
45
∘
)
,
0
<
(
2
θ
−
45
∘
)
<
90
∘
,
then
tan
θ
Report Question
0%
−
1
0%
0
0%
1
0%
1
√
3
Explanation
Given,
sin
θ
=
cos
(
2
θ
−
45
∘
)
since,
sin
θ
=
cos
(
90
∘
−
θ
)
∴
2
θ
−
45
∘
=
90
∘
−
θ
∴
3
θ
=
135
∘
∴
θ
=
45
∘
So,
tan
θ
=
tan
45
∘
=
1
√
1
+
sin
A
1
−
sin
A
is equal to :
Report Question
0%
cot
A
sin
A
+
cos
A
0%
cot
A
cosec
A
−
1
0%
cot
A
sec
A
−
1
0%
cot
A
tan
A
−
1
Explanation
The value of
√
1
+
sin
A
1
−
sin
A
is
=
√
1
+
sin
A
1
−
sin
A
×
√
1
+
sin
A
1
+
sin
A
=
1
+
sin
A
cos
A
=
1
+
sin
A
cos
A
×
cos
A
cos
A
=
cos
A
(
1
+
sin
A
)
cos
2
A
=
cos
A
(
1
+
sin
A
)
(
1
+
sin
A
)
(
1
−
sin
A
)
=
cos
A
1
−
sin
A
=
cos
A
sin
A
1
−
sin
A
sin
A
=
cot
A
cosec
A
−
1
Evalaute
sin
θ
1
+
cos
θ
+
1
+
cos
θ
sin
θ
Report Question
0%
2
sin
A
0%
2
c
o
s
e
c
A
0%
2
tan
A
0%
2
cos
A
Explanation
The value of
sin
θ
1
+
cos
θ
+
1
+
cos
θ
sin
θ
is equal to
=
sin
2
θ
(
1
+
cos
θ
)
2
sin
θ
(
1
+
cos
θ
)
=
sin
2
θ
+
1
+
cos
2
θ
+
2
cos
θ
sin
θ
(
1
+
cos
θ
)
=
1
+
(
sin
2
θ
+
cos
2
θ
)
+
2
cos
θ
sin
θ
(
1
+
cos
θ
)
=
1
+
1
+
2
cos
θ
sin
θ
(
1
+
cos
θ
)
=
2
+
2
cos
θ
sin
θ
(
1
+
cos
θ
)
=
2
(
1
+
cos
θ
)
sin
θ
(
1
+
cos
θ
)
=
2
sin
θ
=
2
cosec
θ
If
cos
θ
−
sin
θ
=
√
2
sin
θ
, then
cos
θ
+
sin
θ
is equal to :
Report Question
0%
√
2
c
o
s
e
c
θ
0%
√
2
sin
θ
0%
√
2
tan
θ
0%
√
2
cos
θ
Explanation
Dividing by
sin
θ
we get,
cot
θ
−
1
=
√
2
⇒
cot
θ
=
√
2
+
1
So,
tan
θ
=
1
√
2
+
1
⇒
tan
θ
=
√
2
−
1
(
√
2
+
1
)
(
√
2
−
1
)
o
r
−
√
2
−
1
(
√
2
+
1
)
(
−
√
2
−
1
)
⇒
tan
θ
=
√
2
−
1
o
r
−
√
2
−
1
⇒
1
+
tan
θ
=
±
√
2
⇒
cos
θ
+
sin
θ
cos
θ
=
±
√
2
⇒
cos
θ
+
sin
θ
=
±
√
2
cos
θ
Therefore, Answer is
√
2
cos
θ
Evaluate
tan
A
+
sec
A
−
1
tan
A
−
sec
A
+
1
Report Question
0%
sec
A
+
tan
A
0%
sin
A
0%
1
0%
0
Explanation
The value of
tan
A
+
sec
A
−
1
tan
A
−
sec
A
+
1
is equal to
=
tan
A
+
sec
A
−
(
sec
2
A
−
tan
2
A
)
tan
A
−
sec
A
+
1
=
(
tan
A
+
sec
A
)
−
(
sec
A
+
tan
A
)
(
sec
A
−
tan
A
)
tan
A
−
sec
A
+
1
=
(
tan
A
+
sec
A
)
(
1
−
sec
A
+
tan
A
)
tan
A
−
sec
A
+
1
=
tan
A
+
sec
A
=
sin
A
cos
A
+
1
cos
A
=
sin
A
+
1
cos
A
=
1
+
sin
A
cos
A
The value of
(
cosec
θ
−
sin
θ
)
(
sec
θ
−
cos
θ
)
(
tan
θ
+
cot
θ
)
is
Report Question
0%
0
0%
1
0%
tan
θ
0%
cot
θ
Explanation
The value of
(
cosec
θ
−
sin
θ
)
(
sec
θ
−
cos
θ
)
(
tan
θ
+
cot
θ
)
is
(
1
sin
θ
−
sin
θ
)
(
1
cos
θ
−
cos
θ
)
(
sin
θ
cos
θ
+
cos
θ
sin
θ
)
=
(
1
−
sin
2
θ
sin
θ
)
(
1
−
cos
2
θ
cos
θ
)
(
1
sin
θ
.
cos
θ
)
=
cos
2
θ
×
sin
2
θ
sin
2
θ
×
cos
2
θ
=
1
The value of
(
1
+
cot
A
−
cosec
A
)
(
1
+
tan
A
+
sec
A
)
is
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
(
1
+
cos
A
sin
A
−
1
sin
A
)
(
1
+
sin
A
cos
A
+
1
cos
A
)
=
(
sin
A
+
cos
A
−
1
sin
A
)
(
cos
A
+
sin
A
+
1
cos
A
)
=
(
sin
A
+
cos
A
)
2
−
1
sin
A
.
cos
A
=
sin
2
A
+
cos
2
A
+
2
sin
A
.
cos
A
−
1
sin
A
.
cos
A
=
sin
2
A
+
cos
2
A
−
1
sin
A
.
cos
A
=
2
sin
A
.
cos
A
sin
A
.
cos
A
=
2
If
sin
x
+
sin
2
x
=
1
, then
cos
2
x
+
cos
4
x
is :
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
Given,
sin
x
+
sin
2
x
=
1
⇒
sin
x
=
1
−
sin
2
x
⇒
sin
x
=
cos
2
x
Then
sin
2
x
=
cos
4
x
⇒
1
−
cos
2
x
=
cos
4
x
Therefore,
cos
2
x
+
cos
4
x
=
1
If
sin
2
θ
7
+
cos
2
θ
7
=
x
21
, then
x
is :
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
sin
2
θ
7
+
cos
2
θ
7
=
x
21
⇒
sin
2
θ
+
cos
2
θ
7
=
x
21
⇒
1
7
=
x
21
⇒
x
=
21
7
=
3
Therefore, Answer is
3
c
o
t
A
2
−
t
a
n
A
2
will be equal to
Report Question
0%
t
a
n
A
0%
c
o
t
0%
2
c
o
t
0%
2
t
a
n
A
Explanation
cot
A
2
−
tan
A
2
⇒
cos
A
2
sin
A
2
−
sin
A
2
cos
A
2
=
cos
2
A
2
−
sin
2
A
2
sin
A
2
cos
A
2
⇒
cos
A
sin
A
2
cos
A
2
[
∵
cos
2
θ
2
−
sin
2
θ
2
=
cos
θ
]
Multiply and divide by
2
,
we get
⇒
2
cos
A
2
sin
A
2
cos
A
2
=
2
cos
A
sin
A
[
∵
2
sin
θ
2
cos
θ
2
=
sin
θ
]
=
2
cot
A
Hence, the answer is
2
cot
A
.
The value of
sin
2
20
o
+
sin
2
70
o
is :
Report Question
0%
1
0%
0
0%
2
0%
3
Explanation
sin
2
20
o
+
sin
2
70
o
=
sin
2
20
o
+
sin
2
(
90
o
−
20
o
)
=
sin
2
20
o
+
cos
2
20
o
=
1
[
∵
sin
(
90
o
−
θ
)
=
cos
θ
]
Hence, option A is correct.
If
θ
is in the first quadrant and
cos
θ
=
3
5
, then the value of
5
tan
θ
−
4
c
o
s
e
c
θ
5
s
e
c
θ
−
4
cot
θ
will be
Report Question
0%
5
16
0%
5
34
0%
−
5
34
0%
−
5
16
Explanation
∵
Since
θ
is in the first quadrant, all trigonometrical ratios will be positive.
and
cos
θ
=
3
5
then
sin
θ
=
s
q
r
t
1
−
cos
2
θ
=
√
1
−
(
3
5
)
2
=
4
5
and
tan
θ
=
4
3
∴
Given, Exp. =
5
tan
θ
−
4
c
o
s
e
c
θ
5
s
e
c
θ
−
4
cot
θ
=
5
×
4
3
−
4
×
5
4
5
×
5
3
−
4
×
3
4
=
5
(
4
3
−
1
)
25
3
−
3
=
5
3
16
3
=
5
16
The value of
s
i
n
2
60
o
+
c
o
s
2
60
o
is :
Report Question
0%
1
0%
−
1
0%
0
0%
None of these
Explanation
\sin ^{ 2 }{ 60° } +\cos ^{ 2 }{ 60° }
\because \sin ^{ 2 }{ \theta } +\cos ^{ 2 }{ \theta } =1
\therefore \sin ^{ 2 }{ 60° } +\cos ^{ 2 }{ 60° } =1
Hence, the answer is
1.
If
\displaystyle \tan \theta +\frac{1}{\tan \theta }= 2
then the value of
\displaystyle \tan ^{^{2}}\theta +\frac{1}{\tan ^{2}\theta }
will be :
Report Question
0%
4
0%
2
0%
1
0%
8
Explanation
\tan { \theta } +\dfrac { 1 }{ \tan { \theta } } =2
Squaring both sides, we get
\Rightarrow { \left( \tan { \theta } +\dfrac { 1 }{ \tan { \theta } } \right) }^{ 2 }=4
\Rightarrow \tan ^{ 2 }{ \theta } +\dfrac { 1 }{ \tan ^{ 2 }{ \theta } } +2.\tan { \theta } .\dfrac { 1 }{ \tan { \theta } } =4
\Rightarrow \tan ^{ 2 }{ \theta } +\dfrac { 1 }{ \tan ^{ 2 }{ \theta } } +2=4
\Rightarrow \tan ^{ 2 }{ \theta } +\dfrac { 1 }{ \tan ^{ 2 }{ \theta } } =2
Hence, the answer is
2.
If
\displaystyle \sqrt { 3 } \tan { \theta } =3\sin { \theta }
, then the value of
\displaystyle { sin }^{ 2 }\theta -{ cos }^{ 2 }\theta
is :
Report Question
0%
\displaystyle \frac { 1 }{ 3 }
0%
\displaystyle \frac { 2 }{ 3 }
0%
\displaystyle \frac { 1 }{ 4 }
0%
\displaystyle \frac { 2 }{ 5 }
Explanation
\displaystyle \frac { \sqrt { 3 } \sin { \theta } }{ \cos { \theta } } =3\sin { \theta }
\displaystyle \sec { \theta } =\sqrt { 3 }
\therefore \displaystyle \cos { \theta } =\frac { 1 }{ \sqrt { 3 } } \Rightarrow { cos }^{ 2 }\theta =\frac { 1 }{ 3 }
\displaystyle { sin }^{ 2 }\theta +{ cos }^{ 2 }\theta =1-{ cos }^{ 2 }\theta -{ cos }^{ 2 }\theta =1-2{ cos }^{ 2 }\theta
...
[\because sin^2\theta = 1-cos^2\theta]
\displaystyle =1-2\left( \frac { 1 }{ 3 } \right) =1-\frac { 2 }{ 3 } =\frac { 1 }{ 3 }
If
\displaystyle 3\cot \theta -4 = 0
, then the value of
\displaystyle\frac{3\cot \theta +4\cos \theta }{3\sin \theta -2\cos }
will be
Report Question
0%
\displaystyle \frac{4}{3}
0%
25
0%
1
0%
0
Explanation
\displaystyle 3\cot \theta -4=0
\displaystyle \cot \theta =\frac{4}{3}
Now,
\displaystyle \frac{3\sin \theta +4\cos \theta }{3\sin \theta -2\cos \theta }
\displaystyle = \frac{\sin \theta \left [ 3+4\frac{\cos \theta }{\sin \theta } \right ]}{\sin \theta \left [ 3-2\frac{\cos \theta }{\sin \theta } \right ]}
\displaystyle = \frac{3+4\cot \theta }{3-2\cot \theta }
\displaystyle = \frac{3+4\times \frac{4}{3}}{3-2\times \frac{4}{3}}
\displaystyle = \frac{3+\frac{16}{3}}{3-\frac{8}{3}}=\frac{\frac{25}{3}}{\frac{1}{3}}
Hence,
\displaystyle = \frac{3\sin \theta +4\cos \theta }{3\sin \theta -2\cos \theta }=25
\displaystyle \sin ^{6}+\sin ^{4}\Theta .\cos ^{2}\Theta -\sin ^{2}\Theta .\cos ^{4}\Theta
is equal to
Report Question
0%
\displaystyle \sin ^{2}\Theta +\cos ^{2}\Theta
0%
\displaystyle \sin ^{8}\Theta -\cos ^{3}\Theta
0%
\displaystyle \sin ^{4}\Theta +\cos ^{4}\Theta
0%
\displaystyle \sin ^{2}\Theta -\cos ^{2}\Theta
Explanation
sin^6\theta+sin^4\theta.cos^2\theta-sin^2\theta.cos^4\theta
\Rightarrow sin^4\theta(sin^2\theta+cos^2\theta)-sin^2\theta.cos^4\theta
\Rightarrow sin^4\theta- sin^2\theta.cos^4\theta
Since\;\;\; sin^2\theta+cos^2\theta=1
If
\displaystyle 3\sin \theta +5\cos \theta =5
, then find the value of
\displaystyle \left ( 5\sin \theta -3\cos \theta \right )
.
Report Question
0%
4
0%
3
0%
2
0%
1
Explanation
\displaystyle \left ( 3\sin \theta +5\cos \theta \right )^{2}+\left ( 5\sin \theta +3\cos \theta \right )^{2}
\displaystyle =9\left ( \sin ^{2}\theta +\cos ^{2}\theta \right )+25\left ( \sin ^{2}\theta +\cos ^{2}\theta \right )
\displaystyle =34
\displaystyle \therefore \left ( 5\sin \theta -3\cos \theta \right )^{2}=34-25=9
\displaystyle \Rightarrow \left ( 5\sin \theta -3\cos \theta \right )=3
Is
\displaystyle \frac{\tan x}{\dfrac{\sin ^{3}x}{\cos x}+\sin x\cos x}
=1
Report Question
0%
True
0%
False
Explanation
\displaystyle \frac{\tan x}{\frac{\sin ^{3}x}{\cos x}+\sin x\cos x}=\frac{\tan x\times \cos x}{\sin ^{3}x+\sin x\cos ^{2}x}
\displaystyle =\frac{\frac{\sin x}{\cos x}\times \cos x}{\sin x\left ( \sin ^{2}x+\cos ^{2}x \right )}
\displaystyle =\frac{\sin x}{\sin x\times 1}=1
A wheel makes 12 revolutions per hour The radians it turns through in 20 minutes is:
Report Question
0%
\displaystyle 8\pi ^{c}
0%
\displaystyle 16\pi ^{c}
0%
\displaystyle 24\pi ^{c}
0%
\displaystyle 32\pi ^{c}
Explanation
As the wheel makes
12
revolutions per hour,
In
20
minutes, it will make
12 \times \dfrac {20}{60} = 4
revolutions.
In each revolution, the wheel covers
{360}^{0}
or
{2\pi }^{c}
So in
4
revolutions, it will cover
4 \times {2\pi }^{c} = {8\pi }^{c}
If
\displaystyle \sin x+\sin ^{2}x=1
, then which one of the following is true?
Report Question
0%
\displaystyle \cos x+\cos ^{2}x=1
0%
\displaystyle \cos x-\cos ^{2}x=1
0%
\displaystyle \cos ^{2}x+\cos ^{4}x=1
0%
\displaystyle \cos ^{4}x+\cos ^{3}x=1
Explanation
\displaystyle \sin x+\sin ^{2}x=1
\displaystyle \Rightarrow \sin x=1-\sin ^{2}x=\cos ^{2}x
\displaystyle \Rightarrow \sin ^{2}x=\cos ^{4}x
\displaystyle \Rightarrow 1-\cos ^{2}x=\cos ^{4}x
\displaystyle \Rightarrow 1=\cos ^{2}x+\cos ^{4}x
\displaystyle \frac{\pi ^{c}}{5}
in sexagesimal measure is _____
Report Question
0%
\displaystyle 18^{\circ}
0%
\displaystyle 36^{\circ}
0%
\displaystyle 54^{\circ}
0%
\displaystyle 72^{\circ}
Explanation
In
\text{Sexagesimal System}
, an angle is measured in degrees, minutes and seconds.
\pi = {180}^{0}
So,
\dfrac {\pi}{5} = \dfrac {{180}^{0}}{5} = {36}^{0}
\displaystyle \frac{1-\sin A}{\cos A}
is equal to
Report Question
0%
\displaystyle \frac{\cos A }{1+\sin A}
0%
\displaystyle \frac{\sin A }{1- \cos A}
0%
\displaystyle \frac{\tan A }{1 + \tan A}
0%
\displaystyle \frac{\tan A }{1 + \cos A}
Explanation
\displaystyle \frac{1-\sin A}{\cos A}=\frac{(1-\sin A)(1+\sin A)}{\cos A(1+\sin A)}
\displaystyle =\frac{1-\sin ^{2}A}{\cos A(1+\sin A)}=\frac{\cos ^{2}A}{\cos A(1+\sin A)}
\displaystyle =\frac{\cos A}{1+\sin A}
Evaluate:
\tan^{2}\theta - \sec^{2}\theta
Report Question
0%
1
0%
-1
0%
0
0%
-2
Explanation
we know that,
1+\tan ^2\theta=\sec ^2\theta
Now,
\tan ^2\theta-\sec ^2\theta=\tan ^2\theta-(1+\tan ^2\theta)=-1
Therefore, Answer is
-1
If
2x = \sec A
and
\dfrac {2}{x} = \tan A
, then
x^{2} - \dfrac {1}{x^{2}} =
Report Question
0%
\dfrac {1}{2}
0%
2
0%
\dfrac {1}{4}
0%
\dfrac {1}{16}
Explanation
Usiong
\sec^{2}\theta - \tan^{2}\theta = 1
\Rightarrow (2x)^{2} - \left (\dfrac {2}{x}\right )^{2} = 1
, substitute the given values in terms of
x
\Rightarrow 4x^{2} - \dfrac {4}{x^{2}} = 1
\Rightarrow 4 \left (x^{2} - \dfrac {1}{x^{2}}\right ) = 1
\Rightarrow x^{2} - \dfrac {1}{x^{2}} = \dfrac {1}{4}
For any acute angle
\theta
, find
\sin^{2}\theta + \cos^{2}\theta
Report Question
0%
1
0%
2
0%
3
0%
0
Explanation
Consider right angled
\triangle ABC
, where
\angle B = 90^{\circ}
and
\angle A = \theta
.
Let
AB = x, BC = y
and
AC = r
So, by Pythagoras theorem,
x^{2} + y^{2} = r^{2}
\sin^{2} \theta +\cos^{2} \theta = \left (\dfrac {y}{r}\right )^{2} + \left (\dfrac {x}{r}\right )^{2} = \dfrac {y^{2}}{r^{2}} + \dfrac {x^{2}}{r^{2}} = \dfrac {x^{2} + y^{2}}{r^{2}} = \dfrac {r^{2}}{r^{2}} = 1
So,
1
is correct.
If
\cot \theta = \dfrac {b}{\sqrt {a^{2} + b^{2}}}
and
0 < \theta < 90^{\circ}
, then
\sin \theta =
Report Question
0%
\dfrac {a}{b}
0%
\dfrac {a}{\sqrt {a^{2} + b^{2}}}
0%
\dfrac {1}{\sqrt {a^{2} + b^{2}}}
0%
\dfrac {b}{\sqrt {a^{2} - b^{2}}}
Explanation
\cos \theta = \dfrac {b}{\sqrt {a^{2} + b^{2}}}
By Pythagoras theorem,
x^{2} + b^{2} =(\sqrt {a^{2} + b^{2}})^{2}
\therefore x^{2} + b^{2} = a^{2} + b^{2}
\Rightarrow x^{2} = a^{2}
\Rightarrow x = a
\therefore \sin \theta = \dfrac {a}{\sqrt {a^{2} + b^{2}}}
\cos{\theta}=0.5698
\therefore \theta=....
Report Question
0%
45^{o}15'
0%
55^{o}20'
0%
55^{o}16'
0%
13^{o}15'
Explanation
\cos (x) = 0.5698 : \begin{bmatrix} Radians : & x= 0.96453 ... + 2 \pi n, x = 2\pi - 0.96453 ... + 2 \pi n \\ Degrees : & x = 55.2635^{\circ} + 360^{\circ} n , x = 360^{\circ} - 55.2635^{\circ} + 360^{\circ} n \end{bmatrix}
correct option is B..
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page