CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 5 - MCQExams.com

$$\displaystyle \left( \sin { \theta  } +\cos { \theta  }  \right) \left( 1-\sin { \theta  } \cos { \theta  }  \right) $$ can be written as :
  • $$\displaystyle \sin { \theta } +\cos { \theta } $$
  • $$\displaystyle { \sin }^{ 3 }\theta -{ \cos }^{ 3 }\theta $$
  • $$\displaystyle { \sin }^{ 3 }\theta +{ \cos }^{ 3 }\theta $$
  • $$\displaystyle \sin { \theta } -\cos { \theta } $$
Evaluate
$$\displaystyle \left( \sin { A } +\cos { A }  \right) \left( \tan { A } +\cot { A }  \right) $$
  • $$\displaystyle \sin { A } +\cos { A } $$
  • $$\displaystyle \sec { A } +cosecA$$
  • $$\displaystyle \sin { A } $$
  • $$\displaystyle \cos { A } $$
If $$\displaystyle \sin \theta =\cos (2\theta -45^{\circ}),\,\,\, 0 < (2\theta -45^{\circ})< 90^{\circ},$$ then $$\displaystyle \tan \theta $$
  • $$-1$$
  • $$0$$
  • $$1$$
  • $$\displaystyle \frac{1}{\sqrt{3}}$$
$$\displaystyle \sqrt { \frac { 1+\sin { A }  }{ 1-\sin { A }  }  } $$ is equal to :
  • $$\displaystyle \frac { \cot{ A } }{ \sin { A } +\cos { A } } $$
  • $$\displaystyle \frac { \cot{ A } }{ \text{cosec}A-1 } $$
  • $$\displaystyle \frac { \cot{ A } }{ \sec { A } -1 } $$
  • $$\displaystyle \frac { \cot{ A } }{ \tan { A } -1 } $$
Evalaute
$$\displaystyle \frac { \sin { \theta  }  }{ 1+\cos { \theta  }  } +\frac { 1+\cos { \theta  }  }{ \sin { \theta  }  } $$
  • $$\displaystyle 2\sin { A } $$
  • $$\displaystyle 2cosecA$$
  • $$\displaystyle 2\tan { A } $$
  • $$\displaystyle 2\cos { A } $$
If $$\displaystyle \cos { \theta  } -\sin { \theta  } =\sqrt { 2 } \sin { \theta  } $$, then $$\displaystyle \cos { \theta  } +\sin { \theta  } $$ is equal to :
  • $$\displaystyle \sqrt { 2 } cosec\theta $$
  • $$\displaystyle \sqrt { 2 } \sin { \theta } $$
  • $$\displaystyle \sqrt { 2 } \tan { \theta } $$
  • $$\displaystyle \sqrt { 2 } \cos { \theta } $$
Evaluate
$$\displaystyle \frac { \tan { A } +\sec { A } -1 }{ \tan { A } -\sec { A } +1 } $$
  • $$\displaystyle \sec { A } +\tan { A } $$
  • $$\displaystyle \sin { A } $$
  • $$\displaystyle 1$$
  • $$\displaystyle 0$$
The value of $$\displaystyle \left( \text{cosec}\theta -\sin { \theta  }  \right) \left( \sec{ \theta  }-\cos { \theta  }  \right) \left( \tan { \theta  } +\cot { \theta  }  \right) $$ is
  • $$0$$
  • $$1$$
  • $$\displaystyle \tan { \theta } $$
  • $$\displaystyle \cot { \theta } $$
The value of $$\displaystyle \left( 1+\cot { A } -\text{cosec } A  \right) \left( 1+\tan { A } +\sec{ A } \right) $$ is
  • 0
  • 1
  • 2
  • 3
If $$\displaystyle \sin { x } +{ \sin }^{ 2 }x=1$$, then $$\displaystyle { \cos }^{ 2 }x+{ \cos }^{ 4 }x$$ is :
  • 1
  • 2
  • 3
  • 4
If $$\displaystyle \frac { { \sin }^{ 2 }\theta  }{ 7 } +\frac { { \cos }^{ 2 }\theta  }{ 7 } =\frac { x }{ 21 } $$, then $$x$$ is :
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
$$cot\displaystyle\frac{A}{2}-tan\displaystyle\frac{A}{2}$$ will be equal to
  • $$tanA$$
  • $$cot$$
  • $$2cot$$
  • $$2tanA$$
The value of $$\displaystyle { \sin }^{ 2 }{ 20 }^{ o }+{ \sin }^{ 2 }{ 70 }^{ o }$$ is :
  • $$1$$
  • $$0$$
  • $$2$$
  • $$3$$
If $$\theta$$ is in the first quadrant and $$\cos\theta=\dfrac{3}{5}$$, then the value of $$\displaystyle\frac{5\tan\theta-4 cosec\theta}{5 sec\theta-4\cot\theta}$$ will be
  • $$\displaystyle\frac{5}{16}$$
  • $$\displaystyle\frac{5}{34}$$
  • $$\displaystyle-\frac{5}{34}$$
  • $$\displaystyle-\frac{5}{16}$$
The value of $$\displaystyle { sin }^{ 2 }{ 60 }^{ o }+{ cos }^{ 2 }{ 60 }^{ o }$$ is :
  • $$1$$
  • $$-1$$
  • $$0$$
  • None of these
If $$\displaystyle \tan \theta +\frac{1}{\tan \theta }= 2$$
then the value of $$\displaystyle \tan ^{^{2}}\theta +\frac{1}{\tan ^{2}\theta }$$ will be :
  • $$4$$
  • $$2$$
  • $$1$$
  • $$8$$
If $$\displaystyle \sqrt { 3 } \tan { \theta  } =3\sin { \theta  } $$, then the value of $$\displaystyle { sin }^{ 2 }\theta -{ cos }^{ 2 }\theta $$ is :
  • $$\displaystyle \frac { 1 }{ 3 } $$
  • $$\displaystyle \frac { 2 }{ 3 } $$
  • $$\displaystyle \frac { 1 }{ 4 } $$
  • $$\displaystyle \frac { 2 }{ 5 } $$
If $$\displaystyle 3\cot \theta -4 = 0$$, then the value of $$\displaystyle\frac{3\cot \theta +4\cos \theta }{3\sin \theta -2\cos }$$  will be
  • $$\displaystyle \frac{4}{3}$$
  • $$25$$
  • $$1$$
  • $$0$$
$$ \displaystyle \sin ^{6}+\sin ^{4}\Theta .\cos ^{2}\Theta -\sin ^{2}\Theta .\cos ^{4}\Theta       $$ is equal to 
  • $$ \displaystyle \sin ^{2}\Theta +\cos ^{2}\Theta $$
  • $$ \displaystyle \sin ^{8}\Theta -\cos ^{3}\Theta $$
  • $$ \displaystyle \sin ^{4}\Theta +\cos ^{4}\Theta $$
  • $$ \displaystyle \sin ^{2}\Theta -\cos ^{2}\Theta $$
If $$\displaystyle 3\sin \theta +5\cos \theta =5$$, then find the value of $$\displaystyle \left ( 5\sin \theta -3\cos \theta  \right )$$.
  • $$4$$
  • $$3$$
  • $$2$$
  • $$1$$
 Is $$\displaystyle \frac{\tan x}{\dfrac{\sin ^{3}x}{\cos x}+\sin x\cos x}$$ $$=1$$
  • True
  • False
A wheel makes 12 revolutions per hour The radians it turns through in 20 minutes is:
  • $$\displaystyle 8\pi ^{c}$$
  • $$\displaystyle 16\pi ^{c}$$
  • $$\displaystyle 24\pi ^{c}$$
  • $$\displaystyle 32\pi ^{c}$$
If $$\displaystyle \sin x+\sin ^{2}x=1$$, then which one of the following is true?
  • $$\displaystyle \cos x+\cos ^{2}x=1$$
  • $$\displaystyle \cos x-\cos ^{2}x=1$$
  • $$\displaystyle \cos ^{2}x+\cos ^{4}x=1$$
  • $$\displaystyle \cos ^{4}x+\cos ^{3}x=1$$
$$\displaystyle \frac{\pi ^{c}}{5}$$ in sexagesimal measure is _____
  • $$\displaystyle 18^{\circ}$$
  • $$\displaystyle 36^{\circ}$$
  • $$\displaystyle 54^{\circ}$$
  • $$\displaystyle 72^{\circ}$$
$$ \displaystyle \frac{1-\sin A}{\cos A}  $$ is equal to
  • $$ \displaystyle \frac{\cos A }{1+\sin A} $$
  • $$ \displaystyle \frac{\sin A }{1- \cos A} $$
  • $$ \displaystyle \frac{\tan A }{1 + \tan A} $$
  • $$ \displaystyle \frac{\tan A }{1 + \cos A} $$
Evaluate: $$\tan^{2}\theta - \sec^{2}\theta$$
  • $$1$$
  • $$-1$$
  • $$0$$
  • $$-2$$
If $$2x = \sec A$$ and $$\dfrac {2}{x} = \tan A$$, then $$x^{2} - \dfrac {1}{x^{2}} = $$
  • $$\dfrac {1}{2}$$
  • $$2$$
  • $$\dfrac {1}{4}$$
  • $$\dfrac {1}{16}$$
For any acute angle $$\theta$$, find $$\sin^{2}\theta + \cos^{2}\theta$$
  • $$1$$
  • $$2$$
  • $$3$$
  • $$0$$
If $$\cot \theta = \dfrac {b}{\sqrt {a^{2} + b^{2}}}$$ and $$0 < \theta < 90^{\circ}$$, then $$\sin \theta =$$
  • $$\dfrac {a}{b}$$
  • $$\dfrac {a}{\sqrt {a^{2} + b^{2}}}$$
  • $$\dfrac {1}{\sqrt {a^{2} + b^{2}}}$$
  • $$\dfrac {b}{\sqrt {a^{2} - b^{2}}}$$
$$\cos{\theta}=0.5698$$ $$\therefore \theta=....$$
  • $$45^{o}15'$$
  • $$55^{o}20'$$
  • $$55^{o}16'$$
  • $$13^{o}15'$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers