Loading [MathJax]/jax/output/CommonHTML/jax.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 5 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 5
(
sin
θ
+
cos
θ
)
(
1
−
sin
θ
cos
θ
)
can be written as :
Report Question
0%
sin
θ
+
cos
θ
0%
sin
3
θ
−
cos
3
θ
0%
sin
3
θ
+
cos
3
θ
0%
sin
θ
−
cos
θ
Explanation
(
sin
θ
+
cos
θ
)
(
1
−
sin
θ
cos
θ
)
can be written as
(
sin
θ
+
cos
θ
)
(
sin
2
θ
+
cos
2
θ
−
sin
θ
.
cos
θ
)
=
sin
3
θ
+
cos
3
θ
Evaluate
(
sin
A
+
cos
A
)
(
tan
A
+
cot
A
)
Report Question
0%
sin
A
+
cos
A
0%
sec
A
+
c
o
s
e
c
A
0%
sin
A
0%
cos
A
Explanation
The value of
(
sin
A
+
cos
A
)
(
tan
A
+
cot
A
)
is
=
(
sin
A
+
cos
A
)
(
sin
A
cos
A
+
cos
A
sin
A
)
=
(
sin
A
+
cos
A
)
(
sin
2
A
+
cos
2
A
cos
A
sin
A
)
=
sin
A
+
cos
A
cos
A
sin
A
=
sin
A
cos
A
sin
A
+
cos
A
cos
A
sin
A
=
1
cos
A
+
1
sin
A
=
sec
A
+
c
o
s
e
c
A
If
sin
θ
=
cos
(
2
θ
−
45
∘
)
,
0
<
(
2
θ
−
45
∘
)
<
90
∘
,
then
tan
θ
Report Question
0%
−
1
0%
0
0%
1
0%
1
√
3
Explanation
Given,
sin
θ
=
cos
(
2
θ
−
45
∘
)
since,
sin
θ
=
cos
(
90
∘
−
θ
)
∴
2
θ
−
45
∘
=
90
∘
−
θ
∴
3
θ
=
135
∘
∴
θ
=
45
∘
So,
tan
θ
=
tan
45
∘
=
1
√
1
+
sin
A
1
−
sin
A
is equal to :
Report Question
0%
cot
A
sin
A
+
cos
A
0%
cot
A
cosec
A
−
1
0%
cot
A
sec
A
−
1
0%
cot
A
tan
A
−
1
Explanation
The value of
√
1
+
sin
A
1
−
sin
A
is
=
√
1
+
sin
A
1
−
sin
A
×
√
1
+
sin
A
1
+
sin
A
=
1
+
sin
A
cos
A
=
1
+
sin
A
cos
A
×
cos
A
cos
A
=
cos
A
(
1
+
sin
A
)
cos
2
A
=
cos
A
(
1
+
sin
A
)
(
1
+
sin
A
)
(
1
−
sin
A
)
=
cos
A
1
−
sin
A
=
cos
A
sin
A
1
−
sin
A
sin
A
=
cot
A
cosec
A
−
1
Evalaute
sin
θ
1
+
cos
θ
+
1
+
cos
θ
sin
θ
Report Question
0%
2
sin
A
0%
2
c
o
s
e
c
A
0%
2
tan
A
0%
2
cos
A
Explanation
The value of
sin
θ
1
+
cos
θ
+
1
+
cos
θ
sin
θ
is equal to
=
sin
2
θ
(
1
+
cos
θ
)
2
sin
θ
(
1
+
cos
θ
)
=
sin
2
θ
+
1
+
cos
2
θ
+
2
cos
θ
sin
θ
(
1
+
cos
θ
)
=
1
+
(
sin
2
θ
+
cos
2
θ
)
+
2
cos
θ
sin
θ
(
1
+
cos
θ
)
=
1
+
1
+
2
cos
θ
sin
θ
(
1
+
cos
θ
)
=
2
+
2
cos
θ
sin
θ
(
1
+
cos
θ
)
=
2
(
1
+
cos
θ
)
sin
θ
(
1
+
cos
θ
)
=
2
sin
θ
=
2
cosec
θ
If
cos
θ
−
sin
θ
=
√
2
sin
θ
, then
cos
θ
+
sin
θ
is equal to :
Report Question
0%
√
2
c
o
s
e
c
θ
0%
√
2
sin
θ
0%
√
2
tan
θ
0%
√
2
cos
θ
Explanation
Dividing by
sin
θ
we get,
cot
θ
−
1
=
√
2
⇒
cot
θ
=
√
2
+
1
So,
tan
θ
=
1
√
2
+
1
⇒
tan
θ
=
√
2
−
1
(
√
2
+
1
)
(
√
2
−
1
)
o
r
−
√
2
−
1
(
√
2
+
1
)
(
−
√
2
−
1
)
⇒
tan
θ
=
√
2
−
1
o
r
−
√
2
−
1
⇒
1
+
tan
θ
=
±
√
2
⇒
cos
θ
+
sin
θ
cos
θ
=
±
√
2
⇒
cos
θ
+
sin
θ
=
±
√
2
cos
θ
Therefore, Answer is
√
2
cos
θ
Evaluate
tan
A
+
sec
A
−
1
tan
A
−
sec
A
+
1
Report Question
0%
sec
A
+
tan
A
0%
sin
A
0%
1
0%
0
Explanation
The value of
tan
A
+
sec
A
−
1
tan
A
−
sec
A
+
1
is equal to
=
tan
A
+
sec
A
−
(
sec
2
A
−
tan
2
A
)
tan
A
−
sec
A
+
1
=
(
tan
A
+
sec
A
)
−
(
sec
A
+
tan
A
)
(
sec
A
−
tan
A
)
tan
A
−
sec
A
+
1
=
(
tan
A
+
sec
A
)
(
1
−
sec
A
+
tan
A
)
tan
A
−
sec
A
+
1
=
tan
A
+
sec
A
=
sin
A
cos
A
+
1
cos
A
=
sin
A
+
1
cos
A
=
1
+
sin
A
cos
A
The value of
(
cosec
θ
−
sin
θ
)
(
sec
θ
−
cos
θ
)
(
tan
θ
+
cot
θ
)
is
Report Question
0%
0
0%
1
0%
tan
θ
0%
cot
θ
Explanation
The value of
(
cosec
θ
−
sin
θ
)
(
sec
θ
−
cos
θ
)
(
tan
θ
+
cot
θ
)
is
(
1
sin
θ
−
sin
θ
)
(
1
cos
θ
−
cos
θ
)
(
sin
θ
cos
θ
+
cos
θ
sin
θ
)
=
(
1
−
sin
2
θ
sin
θ
)
(
1
−
cos
2
θ
cos
θ
)
(
1
sin
θ
.
cos
θ
)
=
cos
2
θ
×
sin
2
θ
sin
2
θ
×
cos
2
θ
=
1
The value of
(
1
+
cot
A
−
cosec
A
)
(
1
+
tan
A
+
sec
A
)
is
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
(
1
+
cos
A
sin
A
−
1
sin
A
)
(
1
+
sin
A
cos
A
+
1
cos
A
)
=
(
sin
A
+
cos
A
−
1
sin
A
)
(
cos
A
+
sin
A
+
1
cos
A
)
=
(
sin
A
+
cos
A
)
2
−
1
sin
A
.
cos
A
=
sin
2
A
+
cos
2
A
+
2
sin
A
.
cos
A
−
1
sin
A
.
cos
A
=
sin
2
A
+
cos
2
A
−
1
sin
A
.
cos
A
=
2
sin
A
.
cos
A
sin
A
.
cos
A
=
2
If
sin
x
+
sin
2
x
=
1
, then
cos
2
x
+
cos
4
x
is :
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
Given,
sin
x
+
sin
2
x
=
1
⇒
sin
x
=
1
−
sin
2
x
⇒
sin
x
=
cos
2
x
Then
sin
2
x
=
cos
4
x
⇒
1
−
cos
2
x
=
cos
4
x
Therefore,
cos
2
x
+
cos
4
x
=
1
If
sin
2
θ
7
+
cos
2
θ
7
=
x
21
, then
x
is :
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
sin
2
θ
7
+
cos
2
θ
7
=
x
21
⇒
sin
2
θ
+
cos
2
θ
7
=
x
21
⇒
1
7
=
x
21
⇒
x
=
21
7
=
3
Therefore, Answer is
3
c
o
t
A
2
−
t
a
n
A
2
will be equal to
Report Question
0%
t
a
n
A
0%
c
o
t
0%
2
c
o
t
0%
2
t
a
n
A
Explanation
cot
A
2
−
tan
A
2
⇒
cos
A
2
sin
A
2
−
sin
A
2
cos
A
2
=
cos
2
A
2
−
sin
2
A
2
sin
A
2
cos
A
2
⇒
cos
A
sin
A
2
cos
A
2
[
∵
cos
2
θ
2
−
sin
2
θ
2
=
cos
θ
]
Multiply and divide by
2
,
we get
⇒
2
cos
A
2
sin
A
2
cos
A
2
=
2
cos
A
sin
A
[
∵
2
sin
θ
2
cos
θ
2
=
sin
θ
]
=
2
cot
A
Hence, the answer is
2
cot
A
.
The value of
sin
2
20
o
+
sin
2
70
o
is :
Report Question
0%
1
0%
0
0%
2
0%
3
Explanation
sin
2
20
o
+
sin
2
70
o
=
sin
2
20
o
+
sin
2
(
90
o
−
20
o
)
=
sin
2
20
o
+
cos
2
20
o
=
1
[
∵
sin
(
90
o
−
θ
)
=
cos
θ
]
Hence, option A is correct.
If
θ
is in the first quadrant and
cos
θ
=
3
5
, then the value of
5
tan
θ
−
4
c
o
s
e
c
θ
5
s
e
c
θ
−
4
cot
θ
will be
Report Question
0%
5
16
0%
5
34
0%
−
5
34
0%
−
5
16
Explanation
∵
Since
θ
is in the first quadrant, all trigonometrical ratios will be positive.
and
cos
θ
=
3
5
then
sin
θ
=
s
q
r
t
1
−
cos
2
θ
=
√
1
−
(
3
5
)
2
=
4
5
and
tan
θ
=
4
3
∴
Given, Exp. =
5
tan
θ
−
4
c
o
s
e
c
θ
5
s
e
c
θ
−
4
cot
θ
=
5
×
4
3
−
4
×
5
4
5
×
5
3
−
4
×
3
4
=
5
(
4
3
−
1
)
25
3
−
3
=
5
3
16
3
=
5
16
The value of
s
i
n
2
60
o
+
c
o
s
2
60
o
is :
Report Question
0%
1
0%
−
1
0%
0
0%
None of these
Explanation
sin
2
60
°
+
cos
2
60
°
∵
sin
2
θ
+
cos
2
θ
=
1
∴
sin
2
60
°
+
cos
2
60
°
=
1
Hence, the answer is
1.
If
tan
θ
+
1
tan
θ
=
2
then the value of
tan
2
θ
+
1
tan
2
θ
will be :
Report Question
0%
4
0%
2
0%
1
0%
8
Explanation
tan
θ
+
1
tan
θ
=
2
Squaring both sides, we get
⇒
(
tan
θ
+
1
tan
θ
)
2
=
4
⇒
tan
2
θ
+
1
tan
2
θ
+
2.
tan
θ
.
1
tan
θ
=
4
⇒
tan
2
θ
+
1
tan
2
θ
+
2
=
4
⇒
tan
2
θ
+
1
tan
2
θ
=
2
Hence, the answer is
2.
If
√
3
tan
θ
=
3
sin
θ
, then the value of
s
i
n
2
θ
−
c
o
s
2
θ
is :
Report Question
0%
1
3
0%
2
3
0%
1
4
0%
2
5
Explanation
√
3
sin
θ
cos
θ
=
3
sin
θ
sec
θ
=
√
3
∴
cos
θ
=
1
√
3
⇒
c
o
s
2
θ
=
1
3
s
i
n
2
θ
+
c
o
s
2
θ
=
1
−
c
o
s
2
θ
−
c
o
s
2
θ
=
1
−
2
c
o
s
2
θ
...
[
∵
s
i
n
2
θ
=
1
−
c
o
s
2
θ
]
=
1
−
2
(
1
3
)
=
1
−
2
3
=
1
3
If
3
cot
θ
−
4
=
0
, then the value of
3
cot
θ
+
4
cos
θ
3
sin
θ
−
2
cos
will be
Report Question
0%
4
3
0%
25
0%
1
0%
0
Explanation
3
cot
θ
−
4
=
0
cot
θ
=
4
3
Now,
3
sin
θ
+
4
cos
θ
3
sin
θ
−
2
cos
θ
=
sin
θ
[
3
+
4
cos
θ
sin
θ
]
sin
θ
[
3
−
2
cos
θ
sin
θ
]
=
3
+
4
cot
θ
3
−
2
cot
θ
=
3
+
4
×
4
3
3
−
2
×
4
3
=
3
+
16
3
3
−
8
3
=
25
3
1
3
Hence,
=
3
sin
θ
+
4
cos
θ
3
sin
θ
−
2
cos
θ
=
25
sin
6
+
sin
4
Θ
.
cos
2
Θ
−
sin
2
Θ
.
cos
4
Θ
is equal to
Report Question
0%
sin
2
Θ
+
cos
2
Θ
0%
sin
8
Θ
−
cos
3
Θ
0%
sin
4
Θ
+
cos
4
Θ
0%
sin
2
Θ
−
cos
2
Θ
Explanation
s
i
n
6
θ
+
s
i
n
4
θ
.
c
o
s
2
θ
−
s
i
n
2
θ
.
c
o
s
4
θ
⇒
s
i
n
4
θ
(
s
i
n
2
θ
+
c
o
s
2
θ
)
−
s
i
n
2
θ
.
c
o
s
4
θ
⇒
s
i
n
4
θ
−
s
i
n
2
θ
.
c
o
s
4
θ
S
i
n
c
e
s
i
n
2
θ
+
c
o
s
2
θ
=
1
If
3
sin
θ
+
5
cos
θ
=
5
, then find the value of
(
5
sin
θ
−
3
cos
θ
)
.
Report Question
0%
4
0%
3
0%
2
0%
1
Explanation
(
3
sin
θ
+
5
cos
θ
)
2
+
(
5
sin
θ
+
3
cos
θ
)
2
=
9
(
sin
2
θ
+
cos
2
θ
)
+
25
(
sin
2
θ
+
cos
2
θ
)
=
34
∴
(
5
sin
θ
−
3
cos
θ
)
2
=
34
−
25
=
9
⇒
(
5
sin
θ
−
3
cos
θ
)
=
3
Is
tan
x
sin
3
x
cos
x
+
sin
x
cos
x
=
1
Report Question
0%
True
0%
False
Explanation
tan
x
sin
3
x
cos
x
+
sin
x
cos
x
=
tan
x
×
cos
x
sin
3
x
+
sin
x
cos
2
x
=
sin
x
cos
x
×
cos
x
sin
x
(
sin
2
x
+
cos
2
x
)
=
sin
x
sin
x
×
1
=
1
A wheel makes 12 revolutions per hour The radians it turns through in 20 minutes is:
Report Question
0%
8
π
c
0%
16
π
c
0%
24
π
c
0%
32
π
c
Explanation
As the wheel makes
12
revolutions per hour,
In
20
minutes, it will make
12
×
20
60
=
4
revolutions.
In each revolution, the wheel covers
360
0
or
2
π
c
So in
4
revolutions, it will cover
4
×
2
π
c
=
8
π
c
If
sin
x
+
sin
2
x
=
1
, then which one of the following is true?
Report Question
0%
cos
x
+
cos
2
x
=
1
0%
cos
x
−
cos
2
x
=
1
0%
cos
2
x
+
cos
4
x
=
1
0%
cos
4
x
+
cos
3
x
=
1
Explanation
sin
x
+
sin
2
x
=
1
⇒
sin
x
=
1
−
sin
2
x
=
cos
2
x
⇒
sin
2
x
=
cos
4
x
⇒
1
−
cos
2
x
=
cos
4
x
⇒
1
=
cos
2
x
+
cos
4
x
π
c
5
in sexagesimal measure is _____
Report Question
0%
18
∘
0%
36
∘
0%
54
∘
0%
72
∘
Explanation
In
Sexagesimal System
, an angle is measured in degrees, minutes and seconds.
π
=
180
0
So,
π
5
=
180
0
5
=
36
0
1
−
sin
A
cos
A
is equal to
Report Question
0%
cos
A
1
+
sin
A
0%
sin
A
1
−
cos
A
0%
tan
A
1
+
tan
A
0%
tan
A
1
+
cos
A
Explanation
1
−
sin
A
cos
A
=
(
1
−
sin
A
)
(
1
+
sin
A
)
cos
A
(
1
+
sin
A
)
=
1
−
sin
2
A
cos
A
(
1
+
sin
A
)
=
cos
2
A
cos
A
(
1
+
sin
A
)
=
cos
A
1
+
sin
A
Evaluate:
tan
2
θ
−
sec
2
θ
Report Question
0%
1
0%
−
1
0%
0
0%
−
2
Explanation
we know that,
1
+
tan
2
θ
=
sec
2
θ
Now,
tan
2
θ
−
sec
2
θ
=
tan
2
θ
−
(
1
+
tan
2
θ
)
=
−
1
Therefore, Answer is
−
1
If
2
x
=
sec
A
and
2
x
=
tan
A
, then
x
2
−
1
x
2
=
Report Question
0%
1
2
0%
2
0%
1
4
0%
1
16
Explanation
Usiong
sec
2
θ
−
tan
2
θ
=
1
⇒
(
2
x
)
2
−
(
2
x
)
2
=
1
, substitute the given values in terms of
x
⇒
4
x
2
−
4
x
2
=
1
⇒
4
(
x
2
−
1
x
2
)
=
1
⇒
x
2
−
1
x
2
=
1
4
For any acute angle
θ
, find
sin
2
θ
+
cos
2
θ
Report Question
0%
1
0%
2
0%
3
0%
0
Explanation
Consider right angled
△
A
B
C
, where
∠
B
=
90
∘
and
∠
A
=
θ
.
Let
A
B
=
x
,
B
C
=
y
and
A
C
=
r
So, by Pythagoras theorem,
x
2
+
y
2
=
r
2
sin
2
θ
+
cos
2
θ
=
(
y
r
)
2
+
(
x
r
)
2
=
y
2
r
2
+
x
2
r
2
=
x
2
+
y
2
r
2
=
r
2
r
2
=
1
So,
1
is correct.
If
cot
θ
=
b
√
a
2
+
b
2
and
0
<
θ
<
90
∘
, then
sin
θ
=
Report Question
0%
a
b
0%
a
√
a
2
+
b
2
0%
1
√
a
2
+
b
2
0%
b
√
a
2
−
b
2
Explanation
cos
θ
=
b
√
a
2
+
b
2
By Pythagoras theorem,
x
2
+
b
2
=
(
√
a
2
+
b
2
)
2
∴
x
2
+
b
2
=
a
2
+
b
2
⇒
x
2
=
a
2
⇒
x
=
a
∴
sin
θ
=
a
√
a
2
+
b
2
cos
θ
=
0.5698
∴
θ
=
.
.
.
.
Report Question
0%
45
o
15
′
0%
55
o
20
′
0%
55
o
16
′
0%
13
o
15
′
Explanation
cos
(
x
)
=
0.5698
:
[
R
a
d
i
a
n
s
:
x
=
0.96453
.
.
.
+
2
π
n
,
x
=
2
π
−
0.96453
.
.
.
+
2
π
n
D
e
g
r
e
e
s
:
x
=
55.2635
∘
+
360
∘
n
,
x
=
360
∘
−
55.2635
∘
+
360
∘
n
]
correct option is B..
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page