Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 6 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 6
The least positive root of the equation
cos
3
x
+
sin
5
x
=
0
is,
Report Question
0%
3
π
16
0%
π
16
0%
7
π
16
0%
9
π
16
Explanation
Consider the given equation.
cos
3
x
+
sin
5
x
=
0
sin
5
x
=
−
cos
3
x
sin
5
x
=
sin
(
3
π
2
−
3
x
)
5
x
=
3
π
2
−
3
x
8
x
=
3
π
2
x
=
3
π
16
Hence, this is the answer.
The value of
cos
π
15
cos
2
π
15
cos
4
π
15
cos
8
π
15
is
Report Question
0%
1
16
0%
−
1
16
0%
1
0%
0
Explanation
cos
π
15
.
cos
2
π
15
.
cos
4
π
15
cos
8
π
15
=
1
4
(
2
cos
4
π
15
cos
π
15
)
(
2
cos
8
π
15
cos
2
π
15
)
=
1
4
(
cos
60
∘
+
cos
36
∘
)
(
cos
120
∘
+
cos
72
∘
)
=
1
4
(
1
2
+
√
5
+
1
4
)
(
−
1
2
+
√
5
−
1
4
)
(
∵
cos
36
∘
=
√
5
+
1
4
a
n
d
cos
72
∘
=
√
5
−
1
4
)
=
1
4
[
−
1
4
+
1
2
(
√
5
−
1
4
−
√
5
+
1
4
)
+
5
−
1
16
]
=
1
4
[
1
2
(
−
1
2
)
]
=
−
1
16
If
f
(
x
)
=
cos
2
x
+
cos
2
2
x
+
cos
2
3
x
, then the number of values of
x
∈
[
0
,
2
π
]
for which
f
(
x
)
=
0
are
Report Question
0%
4
0%
6
0%
8
0%
0
Explanation
Given
f
(
x
)
=
cos
2
x
+
cos
2
2
x
+
cos
2
3
x
Since every term in
f
(
x
)
is always
≥
0
. Therefore for
f
(
x
)
to be zero , each term should be zero
⇒
cos
2
x
=
0
,
cos
2
2
x
=
0
,
cos
2
3
x
=
0
For above equation , there are no common solutions
Therefore the number of values of
x
for which
f
(
x
)
=
0
is
0
If
sin
x
=
1
2
and
cos
x
<
0
, then
x
=
Report Question
0%
−
π
6
0%
π
6
0%
π
2
0%
2
π
3
0%
5
π
6
Explanation
sin
x
=
1
2
,
cos
x
<
0
⇒
sin
x
=
sin
π
6
⇒
x
=
π
6
But
cos
x
<
0
∴
x
=
π
−
π
6
=
5
π
6
Hence, the answer is
5
π
6
.
Find the positive value of
s
i
n
(
t
a
n
−
1
3
)
Report Question
0%
3
10
0%
3
5
0%
3
√
10
0%
1
3
0%
1
√
10
Explanation
We need to find positive value of
sin
(
tan
−
1
3
)
Let
tan
−
1
3
be
θ
⇒
tan
θ
=
3
Therefore
sin
θ
=
tan
θ
√
1
+
tan
2
θ
=
3
√
1
+
3
2
=
3
√
10
2
cos
3
A
sin
A
+
2
sin
3
A
cos
A
equals which one of the following?
Report Question
0%
cos
2
A
0%
2
sin
A
0%
2
cos
A
0%
cos
2
A
0%
sin
2
A
Explanation
The value of
2
cos
3
A
sin
A
+
2
sin
3
A
cos
A
=
2
sin
A
cos
A
(
cos
2
A
+
sin
2
A
)
=
2
sin
A
cos
A
=
sin
(
2
A
)
For acute angle
θ
, find
cosec
2
θ
−
cot
2
θ
Report Question
0%
2
0%
3
0%
0
0%
1
Explanation
Consider right angled
△
A
B
C
,
∠
B
=
90
∘
,
∠
A
=
θ
Also,
A
B
=
x
,
B
C
=
y
and
A
C
=
r
x
2
+
y
2
=
r
2
...B
y Pythagoras theorem
∴
c
o
s
e
c
2
θ
−
cot
2
θ
=
(
1
sin
2
θ
−
cot
2
θ
)
=
(
1
(
y
r
)
2
−
x
2
y
2
)
=
(
r
2
y
2
−
x
2
y
2
)
=
r
2
−
x
2
y
2
=
y
2
y
2
=
1
.
For acute angle
θ
, find value of
sec
2
θ
−
tan
2
θ
Report Question
0%
1
0%
2
0%
3
0%
0
Explanation
Consider right angle
△
A
B
C
,
∠
B
=
90
∘
,
∠
A
=
θ
Also,
A
B
=
x
,
B
C
=
y
and
A
C
=
r
By Pythagoras theorem,
x
2
+
y
2
=
r
2
sec
2
θ
−
tan
2
θ
=
(
r
x
)
2
=
(
y
x
)
2
=
r
2
x
2
−
y
2
x
2
=
r
2
−
y
2
x
2
=
x
2
x
2
=
1
So,
1
is correct.
In any right angled triangle which of the following identity is true?
Report Question
0%
sin
2
θ
−
cos
2
θ
=
1
0%
cos
2
θ
=
1
+
sin
2
θ
0%
1
+
tan
2
θ
=
sec
2
θ
0%
sec
2
θ
+
1
=
tan
2
θ
Explanation
In any right angle triangle following are identities
sin
2
θ
+
cos
2
θ
=
1
And,
1
+
tan
2
θ
=
sec
2
θ
(
cos
2
θ
−
1
)
(
cot
2
θ
+
1
)
+
1
=
Report Question
0%
1
0%
−
1
0%
2
0%
0
Explanation
The value of
(
cos
2
θ
−
1
)
(
cot
2
θ
+
1
)
+
1
is
=
cos
2
θ
.
cot
2
θ
+
cos
2
θ
−
cot
2
θ
−
1
+
1
=
cos
4
θ
sin
2
θ
+
cos
2
θ
−
cos
2
θ
sin
2
θ
=
cos
4
θ
+
cos
2
θ
.
sin
2
θ
−
cos
2
θ
sin
2
θ
=
cos
2
θ
(
cos
2
θ
+
sin
2
θ
−
1
)
sin
2
θ
=
cos
2
θ
(
1
−
1
)
sin
2
θ
....
[
Since
sin
2
θ
+
cos
2
θ
=
1
]
=
0
Hence, option D is correct.
The value of
(
1
+
tan
2
θ
)
sin
2
θ
is
Report Question
0%
sin
2
θ
0%
cos
2
θ
0%
tan
2
θ
0%
cot
2
θ
Explanation
The value of
(
1
+
tan
2
θ
)
sin
2
θ
is
=
sec
2
θ
.
sin
2
θ
.....
[
Since
1
+
tan
2
θ
=
sec
2
θ
]
=
1
cos
2
θ
.
sin
2
θ
=
tan
2
θ
Hence option C is correct.
The value of
9
tan
2
θ
−
9
sec
2
θ
is
Report Question
0%
1
0%
0
0%
9
0%
−
9
Explanation
The value of
9
tan
2
θ
−
9
sec
2
θ
is
=
9
(
tan
2
θ
−
sec
2
θ
)
=
9
(
sec
2
θ
−
1
−
sec
2
θ
)
....
[
Since
tan
2
θ
=
sec
2
θ
−
1
]
=
9
(
−
1
)
=
−
9
Hence, option D is correct.
(
1
+
t
a
n
2
θ
)
.
s
i
n
2
θ
=
Report Question
0%
s
i
n
2
θ
0%
c
o
s
2
θ
0%
t
a
n
2
θ
0%
c
o
t
2
θ
Explanation
(
1
+
t
a
n
2
θ
)
.
s
i
n
2
θ
=
(
1
+
s
i
n
2
θ
c
o
s
2
θ
)
.
s
i
n
2
θ
=
(
c
o
s
2
θ
+
s
i
n
2
θ
c
o
s
2
θ
)
.
s
i
n
2
θ
=
(
1
c
o
s
2
θ
)
.
s
i
n
2
θ
=
s
i
n
2
θ
c
o
s
2
θ
=
t
a
n
2
θ
Option C is correct.
If
x
=
a
sec
θ
,
y
=
b
tan
θ
, then the value of
x
2
a
2
−
y
2
b
2
=
Report Question
0%
1
0%
−
1
0%
tan
2
θ
0%
c
o
s
e
c
2
θ
Explanation
Given,
x
=
a
sec
θ
,
y
=
b
tan
θ
We need to find value of
x
2
a
2
−
y
2
b
2
Thus, the values of
x
2
a
2
=
a
2
sec
2
θ
a
2
=
sec
2
θ
and
y
2
b
2
=
b
2
tan
2
θ
b
2
=
tan
2
θ
Therefore,
x
2
a
2
−
y
2
b
2
=
sec
2
θ
−
tan
2
θ
=
1
....
[
Since
1
+
tan
2
θ
=
sec
2
θ
]
If
sin
(
π
cos
θ
)
=
cos
(
π
sin
θ
)
, then which of the following is correct.
Report Question
0%
cos
θ
=
3
2
√
2
0%
cos
(
θ
−
π
2
)
=
1
2
√
2
0%
cos
(
θ
−
π
4
)
=
1
2
√
2
0%
cos
(
θ
+
π
4
)
=
−
1
2
√
2
Explanation
Given :
sin
(
π
cos
θ
)
=
cos
(
π
sin
θ
)
⟹
sin
(
π
cos
θ
)
=
sin
(
π
2
−
π
sin
θ
)
.........
[
∵
cos
x
=
sin
(
90
o
−
x
)
]
⟹
π
cos
θ
=
π
2
−
π
sin
θ
⟹
cos
θ
=
1
2
−
sin
θ
...... [Divided by
π
]
⟹
cos
θ
+
sin
θ
=
1
2
⟹
√
2
√
2
(
cos
θ
+
sin
θ
)
=
1
2
⟹
√
2
(
1
√
2
cos
θ
+
1
√
2
sin
θ
)
=
1
2
⟹
√
2
(
cos
(
π
4
)
cos
θ
+
sin
(
π
4
)
sin
θ
)
=
1
2
⟹
√
2
cos
(
θ
−
π
4
)
=
1
2
⟹
cos
(
θ
−
π
4
)
=
1
2
√
2
Hence, option C is correct.
(
1
+
cot
2
θ
)
(
1
−
cos
θ
)
(
1
+
cos
θ
)
=
Report Question
0%
tan
2
θ
−
sec
2
θ
0%
sin
2
θ
−
cos
2
θ
0%
sec
2
θ
−
tan
2
θ
0%
cos
2
θ
−
sin
2
θ
Explanation
We have,
(
1
+
cot
2
θ
)
(
1
−
cos
θ
)
(
1
+
cos
θ
)
⇒
(
1
+
cot
2
θ
)
(
1
−
cos
2
θ
)
∵
a
2
−
b
2
=
(
a
+
b
)
(
a
−
b
)
⇒
(
1
+
cot
2
θ
)
(
sin
2
θ
)
∵
sin
2
θ
=
1
−
cos
2
θ
⇒
(
csc
2
θ
)
(
sin
2
θ
)
∵
1
+
cot
2
θ
=
csc
2
θ
⇒
1
sin
2
θ
×
sin
2
θ
∵
csc
2
θ
=
1
sin
2
θ
⇒
1
⇒
sec
2
θ
−
tan
2
θ
∵
sec
2
θ
−
tan
2
θ
=
1
Hence, this is the answer.
Principal solutions of the equation
sin
2
x
+
cos
2
x
=
0
, where
π
<
x
<
2
π
are
Report Question
0%
7
π
8
,
11
π
8
0%
9
π
8
,
13
π
8
0%
11
π
8
,
15
π
8
0%
15
π
8
,
19
π
8
Explanation
Given :
π
<
x
<
2
π
⟹
2
π
<
2
x
<
4
π
......
(
i
)
Also,
sin
2
x
+
cos
2
x
=
0
.....
(
i
i
)
[Given]
⟹
sin
2
x
=
−
cos
2
x
⟹
sin
2
x
cos
2
x
=
−
1
⟹
tan
2
x
=
−
1
⟹
2
x
=
tan
−
1
(
−
1
)
Now, we know that
tan
3
π
4
=
tan
7
π
4
=
tan
11
π
4
=
.
.
.
.
.
.
=
tan
(
4
n
+
3
)
π
4
=
−
1
So, the possible values for
2
x
are
3
π
4
,
7
π
4
,
11
π
4
,
.
.
.
.
.
,
(
4
n
+
3
)
π
4
But, from
(
i
)
we get the values for
2
x
as
11
π
4
and
15
π
4
.
∴
2
x
=
11
π
4
,
15
π
4
⟹
x
=
11
π
8
,
15
π
8
∴
Principal solutions for
(
i
i
)
are
11
π
8
and
15
π
8
.
The number of solutions
[
cos
x
]
+
|
sin
x
|
=
1
in
π
≤
x
<
3
π
,
where
[
x
]
is the greatest integer not exceeding
x
is
Report Question
0%
3
0%
4
0%
2
0%
1
Explanation
We first plotted the graph of
sin
x
and
cos
x
Then using the properties of integral part and mode function we get the graph of
[
cos
x
]
and
|
sin
x
|
Clearly they collectively give
1
at
x
=
3
π
2
,
2
π
,
5
π
2
in the interval
[
π
,
3
π
]
So option
A
is correct
9
tan
2
θ
−
9
sec
2
θ
=
Report Question
0%
1
0%
0
0%
9
0%
−
9
Explanation
9
t
a
n
2
θ
−
9
s
e
c
2
θ
=
−
9
(
s
e
c
2
θ
−
t
a
n
2
θ
)
=
−
9
(
1
)
=
−
9
Option D is correct.
The number of roots of the equation
x
+
2
tan
x
=
π
2
in the interval
[
0
,
2
π
]
is
Report Question
0%
1
0%
2
0%
3
0%
Infinite
Explanation
Given,
x
+
2
tan
x
=
π
2
This equation also can be written as:
tan
x
=
π
4
−
x
2
plot the graph b/w
y
=
tan
x
and
y
=
π
4
−
x
2
straight line cuts
y
=
tan
x
,
3
times in the interval
[
0
,
2
π
]
.
∴
no. of roots=
3
.
The number of principal solutions of
tan
2
θ
=
1
is
Report Question
0%
One
0%
Two
0%
Three
0%
Four
Explanation
Let
y
=
tan
2
θ
tan
2
θ
=
1
⟹
2
θ
=
tan
−
1
(
1
)
⟹
2
θ
=
π
4
+
k
π
,
where
k
is a positive integer
Now,
for
k
=
0
⇒
θ
=
π
4
and for
k
=
1
⇒
θ
=
5
π
4
0
≤
π
4
≤
2
π
and
0
≤
5
π
4
≤
2
π
∴
2
θ
=
π
4
,
5
π
4
⟹
θ
=
π
8
,
5
π
8
Hence, the required principal solutions are
π
8
and
5
π
8
.
The equation
√
3
sin
x
+
cos
x
=
4
has
Report Question
0%
Infinitely many solutions
0%
No solution
0%
Two solutions
0%
Only one solution
Explanation
We know that,
−
√
a
2
+
b
2
≤
a
cos
θ
+
b
sin
θ
≤
√
a
2
+
b
2
∴
−
√
3
+
1
≤
√
3
sin
x
+
cos
x
≤
√
3
+
1
⇒
−
2
≤
√
3
sin
x
+
cos
x
≤
2
But
√
3
sin
x
+
cos
x
=
4
Hence, given equation has no solution.
If
cos
α
+
cos
β
+
cos
γ
=
sin
α
+
sin
β
+
sin
γ
=
0
, then the value of
cos
3
α
+
cos
3
β
+
cos
3
γ
is
Report Question
0%
0
0%
cos
(
α
+
β
+
γ
)
0%
3
cos
(
α
+
β
+
γ
)
0%
3
sin
(
α
+
β
+
γ
)
Explanation
Let
a
=
cos
α
+
i
sin
α
,
b
=
cos
β
+
i
sin
β
,
c
=
cos
γ
+
i
sin
γ
The,
a
+
b
+
c
=
(
cos
α
+
cos
β
+
cos
γ
)
+
i
(
sin
α
+
sin
β
+
sin
γ
)
=
0
+
i
0
=
0
⇒
a
3
+
b
3
+
c
3
=
3
a
b
c
⇒
(
cos
3
α
+
i
sin
3
α
)
+
(
cos
3
β
+
i
sin
β
)
+
(
cos
3
γ
+
i
sin
3
γ
)
=
3
[
cos
(
α
+
β
+
γ
)
+
i
sin
(
α
+
β
+
γ
)
]
by equating the real components
⇒
cos
3
α
+
cos
3
β
+
cos
3
γ
=
3
cos
(
α
+
β
+
γ
)
If
0
≤
x
≤
2
π
, then the number of solutions of the equation
sin
6
x
+
cos
6
x
=
1
is
Report Question
0%
2
0%
3
0%
4
0%
5
0%
8
Explanation
Given equation is
sin
8
x
+
cos
6
x
=
1
⇒
sin
8
x
+
(
1
−
sin
2
x
)
3
=
1
⇒
sin
8
x
−
sin
6
x
+
3
sin
4
x
−
3
sin
2
x
=
0
⇒
sin
6
x
(
sin
2
x
−
1
)
+
3
sin
2
x
(
sin
2
x
−
1
)
=
0
⇒
(
sin
6
x
+
3
sin
2
x
)
(
sin
2
x
−
1
)
=
0
⇒
sin
2
x
(
sin
4
x
+
3
)
(
sin
2
x
−
1
)
=
0
⇒
(
sin
4
x
+
3
)
[
sin
2
x
(
sin
x
−
1
)
(
sin
x
+
1
)
]
=
0
⇒
sin
2
x
(
sin
x
−
1
)
(
sin
x
+
1
)
=
0
[
∵
sin
4
x
+
3
≠
0
]
From above, it is clear that it has three roots in
[
0
,
2
π
]
.
Principal solutions of the equation
sin
2
x
+
cos
2
x
=
0
, where
π
<
x
<
2
π
are
Report Question
0%
7
π
8
,
11
π
8
0%
9
π
8
,
13
π
8
0%
11
π
8
,
15
π
8
0%
15
π
8
,
19
π
8
Explanation
sin
2
x
+
cos
2
x
=
0
sin
2
x
=
−
cos
2
x
sin
2
x
cos
2
x
=
−
1
tan
2
x
=
−
1
⟶
1
π
<
x
<
2
π
2
π
<
2
x
<
4
π
tan
x
is negative in second and fourth quadrant
∴
tan
3
π
4
=
tan
7
π
4
=
.
.
.
.
.
=
tan
(
4
n
−
1
)
π
4
=
−
1
n
=
1
,
2
,
3
,
.
.
.
.
But
2
π
<
2
x
<
4
π
∴
2
x
=
11
π
4
or
2
x
=
15
π
4
x
=
11
π
8
or
15
π
8
If
2
sin
2
θ
+
√
3
cos
θ
+
1
=
0
, then the value of
θ
is
Report Question
0%
π
6
0%
2
π
3
0%
5
π
6
0%
π
Explanation
Given,
2
sin
2
θ
+
√
3
cos
θ
+
1
=
0
⇒
2
(
1
−
cos
2
θ
)
+
√
3
cos
θ
+
1
=
0
⇒
2
cos
2
θ
−
√
3
cos
θ
−
3
=
0
∴
cos
θ
=
√
3
±
√
3
+
4
×
3
×
2
2
×
2
=
√
3
±
3
√
3
4
⇒
cos
θ
=
−
√
3
2
and
cos
θ
=
√
3
∴
cos
θ
=
−
√
3
2
(
∵
cos
θ
cannot be greater than
1
)
⇒
θ
=
5
π
6
.
The set of values of a for which the equation
sin
x
(
sin
x
+
cos
x
)
=
a
has real solutions is
Report Question
0%
[
1
−
√
2
,
1
+
√
2
]
0%
[
2
−
√
3
,
2
+
√
3
]
0%
[
0
,
2
+
√
3
]
0%
[
1
−
√
2
2
,
1
+
√
2
2
]
Explanation
We have,
sin
x
(
sin
x
+
cos
x
)
=
a
⇒
2
sin
2
x
+
2
sin
x
cos
x
=
2
a
⇒
1
−
cos
2
x
+
sin
2
x
=
2
a
⇒
sin
2
x
−
cos
2
x
=
2
a
−
1
This equation will have real solutions, if
|
2
a
−
1
|
≤
√
1
+
1
⇒
1
−
√
2
≤
2
a
≤
1
+
√
2
⇒
a
ϵ
[
1
−
√
2
2
,
1
+
√
2
2
]
Which one of the following equations has no solution?
Report Question
0%
csc
θ
−
sec
θ
=
csc
θ
⋅
sec
θ
0%
csc
θ
⋅
sec
θ
=
1
0%
cos
θ
+
sin
θ
=
√
2
0%
√
3
sin
θ
−
cos
θ
=
2
Explanation
(a)
csc
θ
−
sec
θ
=
csc
θ
⋅
sec
θ
⇒
cos
θ
−
sin
θ
cos
θ
sin
θ
=
1
cos
θ
sin
θ
⇒
cos
θ
=
1
+
sin
θ
At
θ
=
0
above equation satisfies.
(b)
csc
θ
⋅
sec
θ
=
1
⇒
sin
θ
cos
θ
=
1
⇒
2
sin
θ
cos
θ
=
2
⇒
sin
2
θ
=
2
As we know
sin
θ
is not greater than
1
.
Therefore, the above equation has no solution exist.
One of the principal solutions of
√
3
sec
x
=
−
2
is equal to :
Report Question
0%
2
π
3
0%
π
6
0%
5
π
6
0%
π
3
0%
π
4
Explanation
Given,
√
3
sec
x
=
−
2
⇒
sec
x
=
−
2
√
3
⇒
cos
x
=
−
√
3
2
=
−
cos
π
6
⇒
x
=
π
−
π
6
⇒
x
=
5
π
6
The equation
4
s
i
n
2
x
−
2
(
√
3
+
1
)
s
i
n
x
+
√
3
=
0
has
Report Question
0%
2
solutions in
(
0
,
π
)
0%
4
solutions in
(
0
,
2
π
)
0%
2
solutions in
(
−
π
,
π
)
0%
4
solutions in
(
−
π
,
π
)
Explanation
Put
sin
x
=
t
in the given equation, we get
4
t
2
−
2
(
√
3
+
1
)
t
+
√
3
=
0
2
t
(
2
t
−
√
3
)
−
1
(
2
t
−
√
3
)
=
0
(
2
t
−
√
3
)
(
2
t
−
1
)
=
0
t
=
1
2
or
√
3
2
sin
x
=
1
2
or
√
3
2
x
=
n
π
+
(
−
1
)
n
π
6
or
x
=
n
π
+
(
−
1
)
n
π
3
x
=
π
3
,
π
6
,
5
π
6
and
2
π
3
Therefore the above equation has
4
solutions in
(
0
,
2
π
)
,
(
0
,
π
)
and
(
−
π
,
π
)
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page