Processing math: 6%

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 7 - MCQExams.com

If cos1(pa)+cos1(pb)=α, then p2a2+kcosα+p2b2=sin2α, where k is equal to
  • 2pqab
  • 2pqab
  • pqab
  • pqab
The number of solutions of the equation sinθ+cosθ=sin2θ in the interval [π,π] is?
  • 1
  • 2
  • 3
  • 4
The number of real solutions of the equation 2\sin 3x+\sin 7x-3=0 which lie in the interval [-2\pi, 2\pi] is?
  • 1
  • 2
  • 3
  • 4
If \sin x = \cos^2x, then \cos^2x (1 + \cos^2x) is equal to 
  • 0
  • 1
  • 2
  • None of these
Find the value of \tan { 1 } \tan { 2 } ....\tan { 89 }
  • -1
  • 1
  • \sqrt 2
  • 2
The value of \cos ^{ 4 }{ \left( \cfrac { \pi  }{ 8 }  \right)  } +\cos ^{ 4 }{ \left( \cfrac { 3\pi  }{ 8 }  \right)  } +\cos ^{ 4 }{ \left( \cfrac { 5\pi  }{ 8 }  \right)  } +\cos ^{ 4 }{ \left( \cfrac { 7\pi  }{ 8 }  \right)  } is
  • 0
  • 1/2
  • 3/2
  • 1
Let X = \left \{x\epsilon \mathbb {R} : \cos (\sin x) = \sin (\cos x)\right \}. The number of solutions of X is?
  • 0
  • 2
  • 4
  • Not finite
The principal solution of \sec x = \dfrac {2}{\sqrt {3}} are
  • \dfrac {\pi}{3}, \dfrac {11\pi}{6}
  • \dfrac {\pi}{6}, \dfrac {11\pi}{6}
  • \dfrac {\pi}{4}, \dfrac {11\pi}{4}
  • \dfrac {\pi}{3}, \dfrac {11\pi}{4}
The equation 2\tan { x } +5x-2=0 has:
  • no solution in \left[ 0,\dfrac{\pi}{4} \right]
  • at least one real solution in \left[ 0,\dfrac{\pi}{4} \right]
  • two real solution in \left[ 0,\dfrac{\pi}{4} \right]
  • None of these
The expression { \left( \tan { \theta  } +\sec { \theta  }  \right)  }^{ 2 } is equal to
  • \cfrac { 1+\cos { \theta } }{ 1-\cos { \theta } }
  • \cfrac { 1+\sin { \theta } }{ 1-\sin { \theta } }
  • \cfrac { 1-\cos { \theta } }{ 1+\cos { \theta } }
  • \cfrac { 1-\sin {\theta } }{ 1+\sin { \theta } }
\dfrac {\tan \theta}{1 +\tan^{2} \theta} + \dfrac {\cot \theta}{(1 + \cot^{2}\theta)^{2}} is equal to
  • 2\sin \theta \cdot \cos \theta
  • \text{cosec} \theta \cdot \sec \theta
  • \sin \theta \cdot \cos \theta
  • 2\text{cosec} \theta \cdot \sec \theta
If \sin \alpha + \cos \alpha = k, then |\sin \alpha - \cos \alpha | equals.
  • \sqrt {2 - k^{2}}
  • \sqrt {k^{2} - 2}
  • |k|
  • \sqrt {2} - k
  • k - \sqrt {2}
If n = \dfrac {\cos \alpha}{\cos \beta}, m = \dfrac {\sin \alpha}{\sin \beta}, then (m^{2} - n^{2})\sin^{2}\beta is
  • 1 - n
  • 1 + n
  • 1 - n^{2}
  • 1 + n^{2}
If \sin { \theta } =\cfrac { 8 }{ 17 } where { 0 }^{ o }<\theta <{ 90 }^{ o }, then \tan { \theta  } +\sec { \theta  } is
  • \dfrac {1}{3}
  • \dfrac {2}{3}
  • \dfrac {4}{3}
  • \dfrac {5}{3}
\cfrac { 3-4\sin ^{ 2 }{ \theta  }  }{ \cos ^{ 2 }{ \theta  }  } is equal to
  • 3-\cot ^{ 2 }{ \theta }
  • 3+\cot ^{ 2 }{ \theta }
  • 3-\tan ^{ 2 }{ \theta }
  • 3+\tan ^{ 2 }{ \theta }
\sec^26 + \text{cosec}^26 is equal to:
  • \sec^26. \cot^26
  • \sec^26 .\tan^26
  • \text{cosec}^26. \cot^26
  • \text{cosec}^26. \sec^26
\sin { \theta  } +\cos { \theta  } =\sqrt { 2 } and \theta is acute, then \tan{\theta} is
  • \dfrac {1}{\sqrt { 3 } }
  • 1
  • \sqrt { 3 }
  • \infty
If \tan { \theta  } =\dfrac {3}{4} and 0<\theta <{ 90 }^{ 0 }, then the value of \sin { \theta  } \cos { \theta  } is
  • \dfrac {1}{5}
  • \dfrac {9}{5}
  • \dfrac {12}{25}
  • \dfrac {25}{12}
\left( \text{cosec} { \theta  } -\sin { \theta  }  \right) \left( \sec { \theta  } -\cos { \theta  }  \right) \left( \tan { \theta  } +\cot { \theta  }  \right) simplifies to
  • 0
  • 1
  • \tan { \theta }
  • \cot { \theta }
The expression 3(\sin x - \cos x)^{4} + 6(\sin x + \cos x)^{2} + 4(\sin^{6}x + \cos^{6}c) is equal to
  • 10
  • 11
  • 12
  • 13
(\sin \theta + \cos \theta)(1 - \sin \theta \cos \theta) can be written as
  • \sin \theta + \cos \theta
  • \sin^{3} \theta - \cos^{3}\theta
  • \sin^{3}\theta + \cos^{3}\theta
  • \sin \theta - \cos \theta
\sin ^{ 6 }{ \theta  } +\sin ^{ 2 }{ \theta  } \cos ^{ 2 }{ \theta  } -\sin ^{ 4 }{ \theta  } \cos ^{ 4 }{ \theta  } -\cos ^{ 6 }{ \theta  } equals to
  • \sin ^{ 2 }{ \theta } -\cos ^{ 3 }{ \theta }
  • \sin ^{ 3 }{ \theta } -\cos ^{ 3 }{ \theta } \quad
  • \sin ^{ 4 }{ \theta } +\cos ^{ 4 }{ \theta }
  • \sin ^{ 2 }{ \theta } -\cos ^{ 2 }{ \theta }
\left( 1-\sin ^{ 2 }{ \theta  }  \right) \left( 1+\tan ^{ 2 }{ \theta  }  \right) is equal to
  • 1
  • 1.5
  • 2
  • 2.5
\tan { \theta  } \left( 1-\cot ^{ 2 }{ \theta  }  \right) is equal to
  • \cot { \theta } \left( 1-\tan ^{ 2 }{ \theta } \right)
  • \cot { \theta } \left( \tan ^{ 2 }{ \theta } -1 \right)
  • \cot { \theta } \tan ^{ 2 }{ \theta }
  • \tan { \theta } co\sec ^{ 2 }{ \theta }
If 2\cos A+3\cos  B+5\cos C=2\sin A+3\sin B+5\sin C=0 then
8\cos 3A+27\cos 3B+125\cos C=k\cos(A+B+C)  then k=
  • 70
  • 80
  • 90
  • 60
If \sin \left(\sin^{-1}\dfrac{1}{5}+\cos ^{-1}x\right)=1, then find the value of x.
  • -\dfrac{1}{5}
  • \dfrac{1}{2}
  • -\dfrac{1}{2}
  • \dfrac{1}{5}
Solve:
\dfrac{\cot \theta+\text{cosec }\theta-1}{\cot\theta-\text{cosec }\theta+1}
  • \dfrac{1+\cos \theta}{\sin\theta}
  • \dfrac{\sin\theta}{1-\cos\theta}
  • \dfrac{1-\cos\theta}{\sin\theta}
  • \dfrac{\cos\theta}{1-\sin\theta}
If \cos { \theta  } -\sin { \theta  } =\sqrt { 2 } \sin { \theta  } , then \cos { \theta  } +\sin { \theta  } is
  • \sqrt { 2 } \cos { \theta }
  • \sqrt { 2 } \sin { \theta }
  • 0
  • 1
If \theta and \phi are angles in the first quadrant such that \tan { \theta  } =\dfrac 17 and \sin { \phi  } =\dfrac {1}{\sqrt { 10 }} , then 
  • \theta +2\phi ={{90 }}^{o}
  • \theta +2\phi ={{ 30 }}^{o}
  • \theta +2\phi ={{ 75 }}^{o}
  • \theta +2\phi ={{45}}^{o}
The value of 
\cos { \left( \pi /5 \right)  } \cos { \left( 2\pi /5 \right)  } \cos { \left( 4\pi /5 \right)  } \cos { \left( 8\pi /5 \right)  } is 
  • \dfrac{1}{16}
  • 0
  • \dfrac{-1}{8}
  • \dfrac{-1}{16}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers