Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 8 - MCQExams.com

If sinα=12/13(0<α<π/2) and
cosβ=35(π<β<32π), the value of sin(α+β) is
  • 5665
  • 1665
  • 5665
  • 1665
The maximum value of the expression 1sin2θ+3sinθcosθ+5cos2θ is 
  • 2
  • 3
  • 12
  • 13
If cos(AB)=3/5 and tanAtanB=2, then
  • cosAcosB=1/5
  • sinAsinB=2/5
  • cos(A+B)=1/5
  • sinAcosB=4/5
The number of solutions of the pair of equations.
2sin2θcos2θ=0
2cos2θ3sinθ=0
in the interval [0,2π] is?
  • Zero
  • One
  • Two
  • Four
State  true or false
If sin x = sinλ,  then the values of sin(x/3)  are sin (λ/3), sin [(πλ) /3] and - sin [(π+λ) /3]
  • True
  • False
If 2sin2θ5sinθ+2>0,θ(0,2π), then θ
  • (5π6,2π)
  • (0,π6)(5π6,2π)
  • (0,π6)
  • (π80,π6)
If α,β,γ,δ are the smallest +ive angles in ascending order of magnitude which have their sines equal to a +ive quantity λ then the value of 4sinα2+3sinβ2+2sinγ2+sinδ2=.
  • 21λ
  • 21+λ
  • 2λ
  • 2λ+2
If 0xπ and 81sin2x+81cos2x=30, then x is equal to.
  • π/6
  • π/3
  • 5π/6
  • 2π/3
  • All correct
Solve: 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx,πxπ.
  • π,π/2,π/3,π/3,π.
  • π,π/2,π/3,π.
  • π,π/3,π/2,π/3,π.
  • None of these 
Solve (2+3)cosθ=1sinθ.
  • θ=2nπ2π3

  • θ=2rπ2π3.
  • θ=2rπ+2π3.
  • θ=nπ2π3
A balloon is observed simultaneously from three points A B and C, on a straight road directly under it. The angular elevation at B is twice of what it is at A and the angular elevation at C is thrice of what it is at A. If the distance between A and B is 200 meters and the distance between B and C is 100 meters, then find the height of the balloon.
  • 503m
  • 50m
  • 1503m
  • 1003m
Solve tanθ+secθ=3;0θ2π.
  • θ=2nππ6.
  • θ=nπ+π6.
  • θ=2nπ+5π6.
  • θ=2nπ+π6.
If P(4)=3 and sin6x+cos6x=ab(a,bN) and a,b are relatively prime, then a+b is equal to
  • 7
  • 23
  • 16
  • 9
The equation sin6x+cos6x=a2 has real solution if 
  • a(1,1)
  • a(1,12)
  • a(12,12)a(12,1)
  • a(12,1)
If secA+tanA=m and secAtanA=n, find the value of mn.
  • 0
  • ±1
  • ±2
  • ±3
If 8sin(p+2q)=5sinp , then  3(tanp+tanq)=2tanpcos2q.
  • True
  • False
The most general value of θ satisfying both the equations sinθ=12,tanθ=13is(nI) 
  • 2nπ+π6
  • (b)2nπ7π6
  • (c)2nπ+5π6
  • None of these
The expression tanA+secA1tanAsecA+1 reduces to :
  • 1+sinAcosA
  • 1sinAcosA
  • 1+cosAsinA
  • 1+cosAcosA
If sin2θ+cos2θ=1 then 
sin12θ+3sin10θ+3sin8θ+sin6θ+2sin4θ+2sin2θ4=1
  • True
  • False
If sin(πcosx)=cos(πsinx), then sin2x=
  • 34
  • 43
  • 13
  • none of these
The function f(x)=asinx+13sin3x has a maximum at x=π/3, then a equals-
  • 2
  • 2
  • 1
  • 1
If \alpha cos^23\theta +\beta cos^4\theta= 16 cos^6\theta + 9 cos^2\theta is an identity then-
  • \alpha = 1, \beta = 18
  • \alpha = 1, \beta = 24
  • \alpha = 3, \beta = 24
  • \alpha = 4, \beta = 2
A flag staff on the top of the tower 80\ meter high, subtends an angle \tan^{-1}\left(\dfrac{1}{9}\right) at point on the ground 100\ meters away from the foot of the tower. Find the height of the flag-staff.
  • 20\ m
  • 30\ m
  • 25\ m
  • 35\ m
If  x=\dfrac{{2\left( {\sin {1^0} + \sin {2^0} + \sin {3^0} + ....... + \sin {{89}^0}} \right)}}{{2\left( {\cos {1^0} + \cos {2^0} + .............\cos {{44}^0}} \right) + 1}} , then the value of {\log_x}2 is equal
  • 0
  • \dfrac { 1 }{ 2 }
  • 1
  • 2
If A + B + C = \pi , then {\sin ^4}A + {\sin ^4}B + {\sin ^4}C = \cfrac{3}{2} + 2\cos A\cos B\cos C + \cfrac{1}{2}\cos 2A\cos 2B\cos 2C
  • True
  • False
If x \in (\pi, 2\pi) and \cos x + \sin x = \dfrac{1}{2}, then the value of \tan x is
  • \dfrac{4 - \sqrt{7}}{3}
  • \dfrac{\sqrt{7} - 4}{3}
  • \dfrac{-4 + \sqrt{7}}{3}
  • -\left(\dfrac{4 + \sqrt{7}}{3}\right)
If \dfrac{{\left( {1 - \cos A} \right)}}{2} = x then find the value of x is
  • {\cos ^2}\left( {\dfrac{A}{2}} \right)
  • \sqrt {\sin \left( {\dfrac{A}{2}} \right)}
  • \sqrt {\cos \left( {\dfrac{A}{2}} \right)}
  • {\sin ^2}\left( {\dfrac{A}{2}} \right)
If \sin \theta = n \sin(\theta + 2 \alpha) then \tan (\theta + \alpha) =
  • \dfrac{1 + n}{1 - n} \tan \, \alpha
  • \dfrac{1 - n}{1 + n} \tan \, \alpha
  • \tan \, \alpha
  • None
Total number of solution of the equation 3x+2\tan x=\dfrac {5\pi}{2} in x\ \epsilon [0,2\pi] is equal to
  • 1
  • 2
  • 3
  • 4
\sin^{-1}x+\sin^{-1}\dfrac{1}{x}+\cos^{-1}x+\cos^{-1}\dfrac{1}{x}, x\notin \pm 1 is equal to?
  • \pi
  • \dfrac{\pi}{2}
  • \dfrac{3\pi}{2}
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers