Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 8 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 8
If
sin
α
=
12
/
13
(
0
<
α
<
π
/
2
)
and
cos
β
=
−
3
5
(
π
<
β
<
3
2
π
)
, the value of
sin
(
α
+
β
)
is
Report Question
0%
−
56
65
0%
16
65
0%
56
65
0%
−
16
65
Explanation
Ans.
(
a
)
Since
0
<
α
<
π
we have
sin
α
=
12
13
⇒
cos
α
=
√
[
1
−
(
12
/
13
)
2
]
=
5
13
And since
π
<
β
<
3
π
/
2
, we have
cos
β
=
−
3
/
5
⇒
sin
β
=
−
4
/
5
Hence
sin
(
α
+
β
)
=
sin
α
cos
β
+
cos
α
sin
β
=
12
13
(
−
3
5
)
+
(
5
13
)
(
−
4
5
)
=
−
56
65
The maximum value of the expression
1
sin
2
θ
+
3
sin
θ
cos
θ
+
5
cos
2
θ
is
Report Question
0%
2
0%
3
0%
1
2
0%
1
3
Explanation
Ans. Ans.
(
a
)
.
f
(
θ
)
=
1
sin
2
θ
+
3
sin
θ
cos
θ
+
5
cos
2
θ
=
1
1
−
cos
2
θ
2
+
3
2
sin
2
θ
+
5
(
1
+
cos
2
θ
)
2
=
2
6
+
3
sin
2
θ
+
4
cos
2
θ
Hence,
[
f
(
θ
)
]
m
a
x
i
m
u
m
=
2
6
−
5
=
2
If
cos
(
A
−
B
)
=
3
/
5
and
tan
A
tan
B
=
2
, then
Report Question
0%
cos
A
cos
B
=
1
/
5
0%
sin
A
sin
B
=
−
2
/
5
0%
cos
(
A
+
B
)
=
−
1
/
5
0%
sin
A
cos
B
=
4
/
5
Explanation
Ans.
(
a
)
and
(
c
)
cos
(
A
−
B
)
=
3
/
5
∴
5
cos
A
cos
B
+
5
sin
A
sin
B
=
3
But from
2
nd relation
sin
A
sin
B
=
2
cos
A
cos
B
∴
(
5
+
10
)
cos
A
cos
B
=
3
∴
cos
A
cos
B
=
1
/
5
i.e.
(
a
)
Or
5
(
1
2
+
1
)
sin
A
sin
B
=
3
∴
sin
A
sin
B
=
2
/
5
∴
(
b
)
is not correct.
cos
(
A
+
B
)
=
cos
A
cos
B
−
sin
A
sin
B
=
1
5
−
2
5
=
−
1
5
i.e.
(
c
)
The number of solutions of the pair of equations.
2
sin
2
θ
−
cos
2
θ
=
0
2
cos
2
θ
−
3
sin
θ
=
0
in the interval
[
0
,
2
π
]
is?
Report Question
0%
Zero
0%
One
0%
Two
0%
Four
Explanation
From
1
st,
2
sin
2
θ
−
(
1
−
2
sin
2
θ
)
=
0
∴
4
sin
2
θ
=
1
or
sin
θ
=
±
1
/
2
∴
θ
=
π
/
6
,
π
+
π
/
6
in
[
0
,
2
π
]
Also from
2
nd equation, we have
2
(
1
−
sin
2
θ
)
−
3
sin
θ
=
0
or
2
sin
2
θ
+
3
sin
θ
−
2
=
0
or
(
sin
θ
+
2
)
(
2
sin
θ
−
1
)
=
0
∴
sin
θ
=
1
/
2
as
−
2
is rejected
∴
sin
θ
=
1
/
2
which in already included in
1
st. Hence there are only two solutions
⇒
(c).
State true or false
If sin x = sin
λ
, then the values of sin(x/3) are sin (
λ
/3), sin [
(
π
−
λ
)
/3] and - sin [
(
π
+
λ
)
/3]
Report Question
0%
True
0%
False
Explanation
We have
sin
x
−
sin
λ
⇒
x
=
n
π
+
(
−
1
)
n
λ
,
n
ϵ
l
∴
sin
(
x
/
3
)
=
sin
[
n
π
/
3
+
(
−
1
)
2
(
X
/
3
)
]
Hence for n = 0,3, we have
sin
(
x
/
3
)
=
sin
(
λ
/
3
)
and for n = 1,2, we have
sin
(
x
/
3
)
=
sin
π
/
3
−
λ
/
3
[Note that for n = 2, sin(x /3)
=
sin
(
2
π
/
3
+
λ
/
3
)
=
sin
[
π
−
[
π
/
3
−
λ
/
3
]
]
=
sin
(
π
/
3
−
λ
/
3
)
and for n = 4,5, we get
sin (x/3) = -
sin
(
π
/
3
+
λ
/
3
)
.
It is easy to see that all other values of n repeat only these values of
sin
(
x
/
3
)
.
If
2
sin
2
θ
−
5
sin
θ
+
2
>
0
,
θ
∈
(
0
,
2
π
)
, then
θ
∈
Report Question
0%
(
5
π
6
,
2
π
)
0%
(
0
,
π
6
)
∪
(
5
π
6
,
2
π
)
0%
(
0
,
π
6
)
0%
(
π
80
,
π
6
)
Explanation
(
2
sin
θ
−
1
)
(
sin
θ
−
2
)
>
0
∴
sin
θ
<
1
2
=
sin
π
6
=
sin
(
π
−
π
6
)
=
sin
5
π
6
∴
θ
∈
(
0
,
π
6
)
or
θ
∈
(
5
π
6
,
2
π
)
∴
θ
∈
(
0
,
π
6
)
∪
(
5
π
6
,
2
π
)
.
If
α
,
β
,
γ
,
δ
are the smallest
+
ive angles in ascending order of magnitude which have their sines equal to a
+
ive quantity
λ
then the value of
4
sin
α
2
+
3
sin
β
2
+
2
sin
γ
2
+
sin
δ
2
=
.
Report Question
0%
2
√
1
−
λ
0%
2
√
1
+
λ
0%
2
√
λ
0%
2
√
λ
+
2
Explanation
Ans. (b)
sin
α
=
λ
θ
=
n
π
+
(
−
1
)
n
α
For
+
ive values,
n
=
0
,
1
,
2
,
3
∴
α
=
α
,
β
=
π
−
α
,
γ
=
2
π
+
α
,
δ
=
3
π
−
α
∴
E
=
4
sin
α
2
+
3
sin
(
π
2
−
α
2
)
+
2
sin
(
π
+
α
2
)
+
sin
(
3
π
2
−
α
2
)
=
4
sin
α
2
+
3
cos
α
2
−
2
sin
α
2
−
cos
α
2
=
2
(
cos
α
2
+
sin
α
2
)
=
2
√
(
cos
α
2
+
sin
α
2
)
2
=
2
√
1
+
sin
α
=
2
√
1
+
λ
.
If
0
≤
x
≤
π
and
81
sin
2
x
+
81
cos
2
x
=
30
, then x is equal to.
Report Question
0%
π
/
6
0%
π
/
3
0%
5
π
/
6
0%
2
π
/
3
0%
All correct
Explanation
Put
cos
2
x
=
1
−
sin
2
x
If
y
=
81
sin
2
x
then
y
+
81
y
=
30
y
2
−
30
y
+
81
=
0
,
y
=
27
,
3
3
4
sin
2
x
=
3
3
,
3
1
∴
sin
2
x
=
3
4
,
1
4
∴
sin
x
=
√
3
2
,
1
2
as
sin
x
is
+
ive in the given interval
0
<
x
<
π
∴
x
=
π
3
,
π
−
π
3
=
2
π
3
,
π
6
,
π
−
π
6
=
5
π
6
.
Solve:
2
(
cos
x
+
cos
2
x
)
+
sin
2
x
(
1
+
2
cos
x
)
=
2
sin
x
,
−
π
≤
x
≤
π
.
Report Question
0%
−
π
,
−
π
/
2
,
−
π
/
3
,
π
/
3
,
π
.
0%
−
π
,
−
π
/
2
,
π
/
3
,
π
.
0%
−
π
,
−
π
/
3
,
π
/
2
,
π
/
3
,
π
.
0%
None of these
Explanation
2
(
cos
x
+
2
cos
2
x
−
1
)
+
2
sin
x
cos
x
.
(
1
+
2
cos
x
)
−
2
sin
x
=
0
or
2
(
2
cos
2
x
+
cos
x
−
1
)
+
2
sin
x
(
2
cos
2
x
+
cos
x
−
1
)
=
0
2
(
1
+
sin
x
)
(
cos
x
+
1
)
(
2
cos
x
−
1
)
=
0
We have to determine values of x s.t.
−
π
≤
x
≤
π
1
+
sin
x
=
0
∴
sin
x
=
−
1
∴
x
=
2
n
π
+
3
π
2
∴
x
=
−
π
2
,
for
n
=
−
1
∵
−
π
≤
x
<
π
cos
x
=
−
1
=
cos
π
∴
cos
x
=
1
/
2
=
cos
(
π
/
3
)
∴
x
=
2
n
π
±
π
/
3
∴
x
=
π
/
3
,
−
π
/
3
Hence the values of x s.t.
−
π
≤
x
≤
π
are
−
π
,
−
π
/
2
,
−
π
/
3
,
π
/
3
,
π
.
Solve
(
2
+
√
3
)
cos
θ
=
1
−
sin
θ
.
Report Question
0%
θ
=
−
2
n
π
−
2
π
3
0%
θ
=
2
r
π
−
2
π
3
.
0%
θ
=
2
r
π
+
2
π
3
.
0%
θ
=
n
π
−
2
π
3
Explanation
(
2
+
√
3
)
cos
θ
=
1
−
sin
θ
1
−
sin
θ
cos
θ
=
2
+
√
3
(
cos
θ
2
−
sin
θ
2
)
2
cos
2
θ
2
−
sin
2
θ
2
=
2
+
√
3
or
1
−
t
1
+
t
=
tan
75
o
,
t
=
tan
θ
2
or
tan
(
π
4
−
θ
2
)
=
tan
5
π
12
∴
π
4
−
θ
2
=
n
π
+
5
π
12
or
θ
=
−
2
n
π
−
2
π
3
or
θ
=
2
r
π
−
2
π
3
,
r
∈
I
.
A balloon is observed simultaneously from three points A B and C, on a straight road directly under it. The angular elevation at B is twice of what it is at A and the angular elevation at C is thrice of what it is at A. If the distance between A and B is 200 meters and the distance between B and C is 100 meters, then find the height of the balloon.
Report Question
0%
50
√
3
m
0%
50
m
0%
150
√
3
m
0%
100
√
3
m
Explanation
x
=
h
cot
3
α
...............(i)
(
x
+
100
)
=
h
cot
2
α
............ (ii)
(
x
+
300
)
=
h
cot
α
............(iii)
From (i) and (ii)
−
100
=
h
(
cot
3
α
−
cot
2
α
)
=
h
(
s
i
n
2
α
c
o
s
3
α
−
c
o
s
2
α
s
i
n
3
α
)
s
i
n
3
α
s
i
n
2
α
=
s
i
n
(
3
α
−
2
α
)
s
i
n
3
α
s
i
n
2
α
Similarly,
From (ii) and (iii)
−
200
=
h
(
cot
2
α
−
cot
α
)
=
s
i
n
(
2
α
−
α
)
s
i
n
2
α
s
i
n
α
100
=
h
(
sin
α
sin
3
α
sin
2
α
)
on solving
200
=
h
(
sin
α
sin
2
α
sin
α
)
on solving
On dividing the above equations we get,
sin
3
α
sin
α
=
200
100
⇒
sin
3
α
sin
α
=
2
......... (3)
We know that:
s
i
n
3
α
=
3
s
i
n
α
−
4
s
i
n
3
α
From eq (3) we get
⇒
3
sin
α
−
4
sin
3
α
−
2
sin
α
=
0
⇒
4
sin
3
α
−
sin
α
=
0
⇒
sin
α
=
0
or
sin
2
α
=
1
4
sin
2
α
=
1
4
=
sin
2
(
π
6
)
⇒
α
=
π
6
Hence
h
=
200
s
i
n
2
α
=
200
sin
π
3
=
200
√
3
2
=
100
√
3
So the height of the balloon
100
√
3
Solve
tan
θ
+
sec
θ
=
√
3
;
0
≤
θ
≤
2
π
.
Report Question
0%
θ
=
2
n
π
−
π
6
.
0%
θ
=
n
π
+
π
6
.
0%
θ
=
2
n
π
+
5
π
6
.
0%
θ
=
2
n
π
+
π
6
.
Explanation
tan
θ
+
s
e
c
θ
=
√
3
1
+
sin
θ
cos
θ
=
√
3
(
cos
θ
2
+
sin
θ
2
)
2
cos
2
θ
2
−
sin
2
θ
2
=
√
3
or
cos
θ
2
+
sin
θ
2
cos
θ
2
−
sin
θ
2
=
√
3
or
1
+
t
1
−
t
=
√
3
or
tan
(
π
4
+
θ
2
)
=
tan
π
3
∴
θ
2
+
π
4
=
n
π
+
π
3
∴
θ
=
2
n
π
+
π
6
.
If
P
(
4
)
=
3
and
sin
6
x
+
cos
6
x
=
a
b
(
a
,
b
∈
N
)
and
a
,
b
are relatively prime, then
a
+
b
is equal to
Report Question
0%
7
0%
23
0%
16
0%
9
The equation
sin
6
x
+
cos
6
x
=
a
2
has real solution if
Report Question
0%
a
∈
(
−
1
,
1
)
0%
a
∈
(
−
1
,
−
1
2
)
0%
a
∈
(
−
1
2
,
1
2
)
a
∈
(
1
2
,
1
)
0%
a
∈
(
1
2
,
1
)
Explanation
a
2
=
sin
6
x
+
cos
6
x
⇒
a
2
=
(
sin
2
x
+
cos
2
x
)
(
sin
4
x
+
cos
4
x
−
sin
2
x
cos
2
x
)
⇒
a
2
=
(
(
sin
2
x
+
cos
2
x
)
2
−
3
sin
2
x
cos
2
x
)
as(
sin
2
x
+
cos
2
x
=
1
)
⇒
a
2
=
(
1
−
3
sin
2
x
cos
2
x
)
⇒
a
2
=
(
1
−
3
4
sin
2
2
x
)
sin
2
2
x
∈
[
0
,
1
]
∴
1
−
3
4
sin
2
(
2
x
)
∈
[
1
4
,
1
]
1
4
≤
a
2
≤
1
a
∈
[
(
−
∞
,
−
1
2
]
∪
[
1
2
,
∞
)
]
∩
[
−
1
,
1
]
∴
a
∈
[
−
1
,
−
1
2
]
∪
[
1
2
,
1
]
If
sec
A
+
tan
A
=
m
and
sec
A
−
tan
A
=
n
, find the value of
√
m
n
.
Report Question
0%
0
0%
±
1
0%
±
2
0%
±
3
Explanation
Use trigonometry formula:
s
e
c
2
θ
−
t
a
n
2
θ
=
1
s
e
c
A
+
t
a
n
A
=
m
......(1)
s
e
c
A
−
t
a
n
A
=
n
.........(2)
multiply the equations (1) and (2),
(
s
e
c
A
+
t
a
n
A
)
(
s
e
c
A
−
t
a
n
A
)
=
m
n
s
e
c
2
A
−
t
a
n
2
A
=
m
n
1
=
m
n
Therefore,
√
m
n
=
±
1
If
8
sin
(
p
+
2
q
)
=
5
sin
p
, then
3
(
tan
p
+
tan
q
)
=
2
tan
p
cos
2
q
.
Report Question
0%
True
0%
False
The most general value of
θ
satisfying both the equations
sin
θ
=
1
2
,
tan
θ
=
1
√
3
i
s
(
n
∈
I
)
Report Question
0%
2
n
π
+
π
6
0%
(
b
)
2
n
π
−
7
π
6
0%
(
c
)
2
n
π
+
5
π
6
0%
None of these
The expression
tan
A
+
sec
A
−
1
tan
A
−
sec
A
+
1
reduces to :
Report Question
0%
1
+
sin
A
cos
A
0%
1
−
sin
A
cos
A
0%
1
+
cos
A
sin
A
0%
1
+
cos
A
cos
A
Explanation
sec
2
θ
=
1
+
tan
2
θ
⇒
tan
A
+
sec
A
−
1
tan
A
−
sec
A
+
1
⇒
tan
A
+
sec
A
−
(
sec
2
A
−
tan
2
A
)
tan
A
−
sec
A
+
1
⇒
(
tan
A
+
sec
A
)
(
1
−
sec
A
+
tan
A
)
tan
A
−
sec
A
+
1
⇒
tan
A
+
sec
A
⇒
sin
A
cos
A
+
1
cos
A
⇒
1
+
sin
A
cos
A
If
sin
2
θ
+
cos
2
θ
=
1
then
sin
12
θ
+
3
sin
10
θ
+
3
sin
8
θ
+
sin
6
θ
+
2
sin
4
θ
+
2
sin
2
θ
−
4
=
1
Report Question
0%
True
0%
False
If
sin
(
π
cos
x
)
=
cos
(
π
sin
x
)
, then
sin
2
x
=
Report Question
0%
−
3
4
0%
−
4
3
0%
1
3
0%
none of these
Explanation
Given
sin
(
π
cos
x
)
=
cos
(
π
sin
x
)
sin
(
π
c
o
s
x
)
=
sin
(
π
2
−
π
sin
x
)
π
cos
x
=
π
2
−
π
sin
x
cos
x
+
sin
x
=
1
2
Squaring on both sides
sin
2
x
+
cos
2
x
+
2
sin
x
cos
x
=
1
4
1
+
2
sin
x
cos
x
=
1
4
sin
2
x
=
−
3
4
The function
f
(
x
)
=
a
sin
x
+
1
3
sin
3
x
has a maximum at
x
=
π
/
3
, then a equals-
Report Question
0%
−
2
0%
2
0%
−
1
0%
1
Explanation
f
(
x
)
=
a
sin
x
+
1
3
sin
3
x
f
′
(
x
)
=
a
cos
x
+
1
3
cos
3
x
×
3
=
a
cos
x
+
cos
3
x
S
i
n
c
e
f
(
x
)
h
a
s
max
If
\alpha cos^23\theta +\beta cos^4\theta= 16 cos^6\theta + 9 cos^2\theta
is an identity then-
Report Question
0%
\alpha = 1, \beta = 18
0%
\alpha = 1, \beta = 24
0%
\alpha = 3, \beta = 24
0%
\alpha = 4, \beta = 2
Explanation
\alpha\cos^2 3\theta+\beta\cos^4\theta=16\cos^6\theta+9\cos^2\theta
\Rightarrow
\alpha(4\cos^3\theta-3\cos\theta)^2+\beta\cos^4\theta=16\cos^6\theta+9\cos^2\theta
\Rightarrow
\alpha(16\cos^6\theta+9\cos^2\theta-24\cos^4\theta)+\beta\cos^4\theta=16\cos^6\theta+9\cos^2\theta
\Rightarrow
\alpha(16\cos^6\theta+9\cos^2\theta)-24\alpha\cos^4\theta+\beta\cos^4\theta=(16\cos^6\theta+9\cos^2\theta)
\Rightarrow
\alpha(16\cos^6\theta+9\cos^2\theta)-\cos^4\theta(24\alpha-\beta)=(16\cos^6\theta+9\cos^2\theta)
\Rightarrow
\alpha(16\cos^6\theta+9\cos^2\theta)-\cos^4\theta(24\alpha-\beta)=(16\cos^6\theta+9\cos^2\theta)+\cos^4\theta\times 0
Now, we are going to compare,
\alpha(16\cos^6+9\cos^2\theta)=16\cos^6+9\cos^2\theta
\therefore
\alpha=1
Again,
\Rightarrow
-\cos^4\theta(24\alpha-\beta)=\cos^4\theta\times 0
\Rightarrow
24(1)-\beta=0
[ Since,
\alpha=1
]
\Rightarrow
\beta=24
\therefore
\alpha=1
and
\beta=24
A flag staff on the top of the tower
80\ meter
high, subtends an angle
\tan^{-1}\left(\dfrac{1}{9}\right)
at point on the ground
100\ meters
away from the foot of the tower. Find the height of the flag-staff.
Report Question
0%
20\ m
0%
30\ m
0%
25\ m
0%
35\ m
Explanation
\rightarrow
Let, height of the flag stuff be
x
.
\rightarrow
Angle subtended by the tower.
\therefore \theta = \tan^{-1} \left( \dfrac{80}{100} \right)= 38.7
degree.
\rightarrow
Angle subtended by the flag stuff
\therefore \tan^{-1} (7/9)= 6.3
degree.
\rightarrow
total angle subtended
= 38.7 + 6.3
= 45
degree.
\rightarrow
As shown in triangle
\tan 45= \dfrac{x +80}{100}
\therefore 1 =\dfrac{x+80}{100}
\therefore x= 100-80
\therefore x= 20
If
x=\dfrac{{2\left( {\sin {1^0} + \sin {2^0} + \sin {3^0} + ....... + \sin {{89}^0}} \right)}}{{2\left( {\cos {1^0} + \cos {2^0} + .............\cos {{44}^0}} \right) + 1}}
, then the value of
{\log_x}2
is equal
Report Question
0%
0
0%
\dfrac { 1 }{ 2 }
0%
1
0%
2
If
A + B + C = \pi
, then
{\sin ^4}A + {\sin ^4}B + {\sin ^4}C = \cfrac{3}{2} + 2\cos A\cos B\cos C + \cfrac{1}{2}\cos 2A\cos 2B\cos 2C
Report Question
0%
True
0%
False
Explanation
We have,
A + B + C = \pi
We know that
\sin^2 x=\left(\dfrac{1-\cos 2x}{2}\right)
\sin^4 x=\left(\dfrac{1-\cos 2x}{2}\right)^2
\cos 2A+\cos 2B+\cos 2C=-1-4\cos A \cos B \cos C
........(1)
\cos^2 2A+\cos^2 2B+\cos^2 2C=1+2\cos 2A \cos 2B \cos 2C
........(2)
Now,
L.H.S
={\sin ^4}A + {\sin ^4}B + {\sin ^4}C
=\left(\dfrac{1-\cos 2A}{2}\right)^2+\left(\dfrac{1-\cos 2B}{2}\right)^2+\left(\dfrac{1-\cos 2C}{2}\right)^2
=\dfrac{1}{2}\left[1+\cos^2 2A-2\cos 2A+1+\cos^2 2B-2\cos 2B+1+\cos^2 2C-2\cos 2C\right]
=\dfrac{1}{2}\left[3+(\cos^2 2A+\cos^2 2B+\cos^2 2C)-2(\cos 2A+\cos 2B+\cos 2C)\right]
From equations
(1)
and
(2)
=\dfrac{1}{2}\left[3+(1+\cos 2A\cos 2B\cos 2C)-2(-1-4\cos A\cos B\cos C)\right]
=\dfrac{1}{2}\left[4+\cos 2A\cos 2B\cos 2C+2+8\cos A\cos B\cos C\right]
=\dfrac{1}{2}\left[6+\cos 2A\cos 2B\cos 2C+8\cos A\cos B\cos C\right]
= \cfrac{3}{2} + 2\cos A\cos B\cos C + \cfrac{1}{2}\cos 2A\cos 2B\cos 2C
R.H.S
Hence, proved.
If
x \in (\pi, 2\pi)
and
\cos x + \sin x = \dfrac{1}{2}
, then the value of
\tan x
is
Report Question
0%
\dfrac{4 - \sqrt{7}}{3}
0%
\dfrac{\sqrt{7} - 4}{3}
0%
\dfrac{-4 + \sqrt{7}}{3}
0%
-\left(\dfrac{4 + \sqrt{7}}{3}\right)
Explanation
\cos x+\sin x=\dfrac{1}{2}
x\in (\pi, 2\pi)
divide by
\cos x
1+\dfrac{\sin x}{\cos x}=\dfrac{1}{2\cos x}
\Rightarrow 1+\tan x=\dfrac{1}{2}\sec x
[we know
\sec^2x-\tan^2x=1
]
\Rightarrow 1+\tan x=\dfrac{1}{2}\sqrt{1+\tan^2x}
Let
\tan x=t
1+t=\dfrac{\sqrt{1+t^2}}{2}
(2(1+t))^2=1+t^2
\Rightarrow 3t^2+8t+3=0
\therefore t=\dfrac{-8\pm \sqrt{8^2-4(3)(3)}}{2\times 3}
\Rightarrow \dfrac{-8\pm 2\sqrt{7}}{6}
\Rightarrow t=\dfrac{-4\pm \sqrt{7}}{3}
\therefore \tan x=\dfrac{-4\pm \sqrt{7}}{3}
but
x\in (\pi, 2\pi)
\therefore \tan x=\dfrac{-4+\sqrt{7}}{3}
.
If
\dfrac{{\left( {1 - \cos A} \right)}}{2} = x
then find the value of
x
is
Report Question
0%
{\cos ^2}\left( {\dfrac{A}{2}} \right)
0%
\sqrt {\sin \left( {\dfrac{A}{2}} \right)}
0%
\sqrt {\cos \left( {\dfrac{A}{2}} \right)}
0%
{\sin ^2}\left( {\dfrac{A}{2}} \right)
Explanation
\implies\cfrac { 1-\cos A }{ 2 } =x
\implies\cfrac { 2{ \sin }^{ 2 }\cfrac { A }{ 2 } }{ 2 } =x
\implies x={ \sin }^{ 2 }\cfrac { A }{ 2 }
If
\sin \theta = n \sin(\theta + 2 \alpha)
then
\tan (\theta + \alpha)
=
Report Question
0%
\dfrac{1 + n}{1 - n} \tan \, \alpha
0%
\dfrac{1 - n}{1 + n} \tan \, \alpha
0%
\tan \, \alpha
0%
None
Explanation
\sin\theta =n\sin(\theta +2\alpha )
\dfrac{\sin\theta }{\sin(\theta+2\alpha ) }=n
apply componendo dividendo rule,
\dfrac{\sin\theta +\sin(\theta +2\alpha )}{\sin\theta -\sin(\theta +2\alpha )}=\dfrac{n+1}{n-1}
apply
\sin C+\sin D
and
\sin C-\sin D
\dfrac{2\sin(\theta +\alpha )\cos\alpha }{2\sin\alpha \cos(\theta +\alpha )}=\dfrac{n+1}{n-1}
\dfrac{\tan(\theta +\alpha )}{\tan\alpha }=\dfrac{n+1}{n-1}
\tan(\theta +\alpha )=\dfrac{n+1}{n-1}\tan\alpha
Total number of solution of the equation
3x+2\tan x=\dfrac {5\pi}{2}
in
x\ \epsilon [0,2\pi]
is equal to
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
Given equation
3x+2\tan x=\dfrac{5\pi}{2}
2\tan x =5\dfrac{\pi}{2}-3x
\tan x=\dfrac{5\pi}{4}-\dfrac{3x}{2}
y=\tan x=\dfrac{5\pi}{4}-\dfrac{3x}{2}
Using graph we find point intersection of
y=\tan x;y=\dfrac{5\pi}{4}-\dfrac{3x}{2}\left(m=-\dfrac{3}{2};C=\dfrac{5\pi}{4}\right)
x-intercept :y=0;
\dfrac{3x}{2}=\dfrac{5\pi}{4}\left(x=\dfrac{5\pi}{6},y=0\right)
y-intercept\, x=0;
y=\dfrac{5\pi}{4}\left(x=0;y=\dfrac{5\pi}{4}\right)
Given region of graph
[0,2\pi]
Number of solution = Number of intersections
='3'
\boxed{Number\, of \, solutions=3}
\sin^{-1}x+\sin^{-1}\dfrac{1}{x}+\cos^{-1}x+\cos^{-1}\dfrac{1}{x}, x\notin \pm 1
is equal to?
Report Question
0%
\pi
0%
\dfrac{\pi}{2}
0%
\dfrac{3\pi}{2}
0%
None of these
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page