Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 8 - MCQExams.com

If sinα=12/13(0<α<π/2) and
cosβ=35(π<β<32π), the value of sin(α+β) is
  • 5665
  • 1665
  • 5665
  • 1665
The maximum value of the expression 1sin2θ+3sinθcosθ+5cos2θ is 
  • 2
  • 3
  • 12
  • 13
If cos(AB)=3/5 and tanAtanB=2, then
  • cosAcosB=1/5
  • sinAsinB=2/5
  • cos(A+B)=1/5
  • sinAcosB=4/5
The number of solutions of the pair of equations.
2sin2θcos2θ=0
2cos2θ3sinθ=0
in the interval [0,2π] is?
  • Zero
  • One
  • Two
  • Four
State  true or false
If sin x = sinλ,  then the values of sin(x/3)  are sin (λ/3), sin [(πλ) /3] and - sin [(π+λ) /3]
  • True
  • False
If 2sin2θ5sinθ+2>0,θ(0,2π), then θ
  • (5π6,2π)
  • (0,π6)(5π6,2π)
  • (0,π6)
  • (π80,π6)
If α,β,γ,δ are the smallest +ive angles in ascending order of magnitude which have their sines equal to a +ive quantity λ then the value of 4sinα2+3sinβ2+2sinγ2+sinδ2=.
  • 21λ
  • 21+λ
  • 2λ
  • 2λ+2
If 0xπ and 81sin2x+81cos2x=30, then x is equal to.
  • π/6
  • π/3
  • 5π/6
  • 2π/3
  • All correct
Solve: 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx,πxπ.
  • π,π/2,π/3,π/3,π.
  • π,π/2,π/3,π.
  • π,π/3,π/2,π/3,π.
  • None of these 
Solve (2+3)cosθ=1sinθ.
  • θ=2nπ2π3

  • θ=2rπ2π3.
  • θ=2rπ+2π3.
  • θ=nπ2π3
A balloon is observed simultaneously from three points A B and C, on a straight road directly under it. The angular elevation at B is twice of what it is at A and the angular elevation at C is thrice of what it is at A. If the distance between A and B is 200 meters and the distance between B and C is 100 meters, then find the height of the balloon.
  • 503m
  • 50m
  • 1503m
  • 1003m
Solve tanθ+secθ=3;0θ2π.
  • θ=2nππ6.
  • θ=nπ+π6.
  • θ=2nπ+5π6.
  • θ=2nπ+π6.
If P(4)=3 and sin6x+cos6x=ab(a,bN) and a,b are relatively prime, then a+b is equal to
  • 7
  • 23
  • 16
  • 9
The equation sin6x+cos6x=a2 has real solution if 
  • a(1,1)
  • a(1,12)
  • a(12,12)a(12,1)
  • a(12,1)
If secA+tanA=m and secAtanA=n, find the value of mn.
  • 0
  • ±1
  • ±2
  • ±3
If 8sin(p+2q)=5sinp , then  3(tanp+tanq)=2tanpcos2q.
  • True
  • False
The most general value of θ satisfying both the equations sinθ=12,tanθ=13is(nI) 
  • 2nπ+π6
  • (b)2nπ7π6
  • (c)2nπ+5π6
  • None of these
The expression tanA+secA1tanAsecA+1 reduces to :
  • 1+sinAcosA
  • 1sinAcosA
  • 1+cosAsinA
  • 1+cosAcosA
If sin2θ+cos2θ=1 then 
sin12θ+3sin10θ+3sin8θ+sin6θ+2sin4θ+2sin2θ4=1
  • True
  • False
If sin(πcosx)=cos(πsinx), then sin2x=
  • 34
  • 43
  • 13
  • none of these
The function f(x)=asinx+13sin3x has a maximum at x=π/3, then a equals-
  • 2
  • 2
  • 1
  • 1
If αcos23θ+βcos4θ=16cos6θ+9cos2θ is an identity then-
  • α=1,β=18
  • α=1,β=24
  • α=3,β=24
  • α=4,β=2
A flag staff on the top of the tower 80 meter high, subtends an angle tan1(19) at point on the ground 100 meters away from the foot of the tower. Find the height of the flag-staff.
  • 20 m
  • 30 m
  • 25 m
  • 35 m
If  x=2(sin10+sin20+sin30+.......+sin890)2(cos10+cos20+.............cos440)+1 , then the value of logx2 is equal
  • 0
  • 12
  • 1
  • 2
If A+B+C=π, then sin4A+sin4B+sin4C=32+2cosAcosBcosC+12cos2Acos2Bcos2C
  • True
  • False
If x(π,2π) and cosx+sinx=12, then the value of tanx is
  • 473
  • 743
  • 4+73
  • (4+73)
If (1cosA)2=x then find the value of x is
  • cos2(A2)
  • sin(A2)
  • cos(A2)
  • sin2(A2)
If sinθ=nsin(θ+2α) then tan(θ+α) =
  • 1+n1ntanα
  • 1n1+ntanα
  • tanα
  • None
Total number of solution of the equation 3x+2tanx=5π2 in x ϵ[0,2π] is equal to
  • 1
  • 2
  • 3
  • 4
sin1x+sin11x+cos1x+cos11x,x±1 is equal to?
  • π
  • π2
  • 3π2
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers