Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 8 - MCQExams.com
CBSE
Class 11 Engineering Maths
Trigonometric Functions
Quiz 8
If
sin
α
=
12
/
13
(
0
<
α
<
π
/
2
)
and
cos
β
=
−
3
5
(
π
<
β
<
3
2
π
)
, the value of
sin
(
α
+
β
)
is
Report Question
0%
−
56
65
0%
16
65
0%
56
65
0%
−
16
65
Explanation
Ans.
(
a
)
Since
0
<
α
<
π
we have
sin
α
=
12
13
⇒
cos
α
=
√
[
1
−
(
12
/
13
)
2
]
=
5
13
And since
π
<
β
<
3
π
/
2
, we have
cos
β
=
−
3
/
5
⇒
sin
β
=
−
4
/
5
Hence
sin
(
α
+
β
)
=
sin
α
cos
β
+
cos
α
sin
β
=
12
13
(
−
3
5
)
+
(
5
13
)
(
−
4
5
)
=
−
56
65
The maximum value of the expression
1
sin
2
θ
+
3
sin
θ
cos
θ
+
5
cos
2
θ
is
Report Question
0%
2
0%
3
0%
1
2
0%
1
3
Explanation
Ans. Ans.
(
a
)
.
f
(
θ
)
=
1
sin
2
θ
+
3
sin
θ
cos
θ
+
5
cos
2
θ
=
1
1
−
cos
2
θ
2
+
3
2
sin
2
θ
+
5
(
1
+
cos
2
θ
)
2
=
2
6
+
3
sin
2
θ
+
4
cos
2
θ
Hence,
[
f
(
θ
)
]
m
a
x
i
m
u
m
=
2
6
−
5
=
2
If
cos
(
A
−
B
)
=
3
/
5
and
tan
A
tan
B
=
2
, then
Report Question
0%
cos
A
cos
B
=
1
/
5
0%
sin
A
sin
B
=
−
2
/
5
0%
cos
(
A
+
B
)
=
−
1
/
5
0%
sin
A
cos
B
=
4
/
5
Explanation
Ans.
(
a
)
and
(
c
)
cos
(
A
−
B
)
=
3
/
5
∴
5
cos
A
cos
B
+
5
sin
A
sin
B
=
3
But from
2
nd relation
sin
A
sin
B
=
2
cos
A
cos
B
∴
(
5
+
10
)
cos
A
cos
B
=
3
∴
cos
A
cos
B
=
1
/
5
i.e.
(
a
)
Or
5
(
1
2
+
1
)
sin
A
sin
B
=
3
∴
sin
A
sin
B
=
2
/
5
∴
(
b
)
is not correct.
cos
(
A
+
B
)
=
cos
A
cos
B
−
sin
A
sin
B
=
1
5
−
2
5
=
−
1
5
i.e.
(
c
)
The number of solutions of the pair of equations.
2
sin
2
θ
−
cos
2
θ
=
0
2
cos
2
θ
−
3
sin
θ
=
0
in the interval
[
0
,
2
π
]
is?
Report Question
0%
Zero
0%
One
0%
Two
0%
Four
Explanation
From
1
st,
2
sin
2
θ
−
(
1
−
2
sin
2
θ
)
=
0
∴
4
sin
2
θ
=
1
or
sin
θ
=
±
1
/
2
∴
θ
=
π
/
6
,
π
+
π
/
6
in
[
0
,
2
π
]
Also from
2
nd equation, we have
2
(
1
−
sin
2
θ
)
−
3
sin
θ
=
0
or
2
sin
2
θ
+
3
sin
θ
−
2
=
0
or
(
sin
θ
+
2
)
(
2
sin
θ
−
1
)
=
0
∴
sin
θ
=
1
/
2
as
−
2
is rejected
∴
sin
θ
=
1
/
2
which in already included in
1
st. Hence there are only two solutions
⇒
(c).
State true or false
If sin x = sin
λ
, then the values of sin(x/3) are sin (
λ
/3), sin [
(
π
−
λ
)
/3] and - sin [
(
π
+
λ
)
/3]
Report Question
0%
True
0%
False
Explanation
We have
sin
x
−
sin
λ
⇒
x
=
n
π
+
(
−
1
)
n
λ
,
n
ϵ
l
∴
sin
(
x
/
3
)
=
sin
[
n
π
/
3
+
(
−
1
)
2
(
X
/
3
)
]
Hence for n = 0,3, we have
sin
(
x
/
3
)
=
sin
(
λ
/
3
)
and for n = 1,2, we have
sin
(
x
/
3
)
=
sin
π
/
3
−
λ
/
3
[Note that for n = 2, sin(x /3)
=
sin
(
2
π
/
3
+
λ
/
3
)
=
sin
[
π
−
[
π
/
3
−
λ
/
3
]
]
=
sin
(
π
/
3
−
λ
/
3
)
and for n = 4,5, we get
sin (x/3) = -
sin
(
π
/
3
+
λ
/
3
)
.
It is easy to see that all other values of n repeat only these values of
sin
(
x
/
3
)
.
If
2
sin
2
θ
−
5
sin
θ
+
2
>
0
,
θ
∈
(
0
,
2
π
)
, then
θ
∈
Report Question
0%
(
5
π
6
,
2
π
)
0%
(
0
,
π
6
)
∪
(
5
π
6
,
2
π
)
0%
(
0
,
π
6
)
0%
(
π
80
,
π
6
)
Explanation
(
2
sin
θ
−
1
)
(
sin
θ
−
2
)
>
0
∴
sin
θ
<
1
2
=
sin
π
6
=
sin
(
π
−
π
6
)
=
sin
5
π
6
∴
θ
∈
(
0
,
π
6
)
or
θ
∈
(
5
π
6
,
2
π
)
∴
θ
∈
(
0
,
π
6
)
∪
(
5
π
6
,
2
π
)
.
If
α
,
β
,
γ
,
δ
are the smallest
+
ive angles in ascending order of magnitude which have their sines equal to a
+
ive quantity
λ
then the value of
4
sin
α
2
+
3
sin
β
2
+
2
sin
γ
2
+
sin
δ
2
=
.
Report Question
0%
2
√
1
−
λ
0%
2
√
1
+
λ
0%
2
√
λ
0%
2
√
λ
+
2
Explanation
Ans. (b)
sin
α
=
λ
θ
=
n
π
+
(
−
1
)
n
α
For
+
ive values,
n
=
0
,
1
,
2
,
3
∴
α
=
α
,
β
=
π
−
α
,
γ
=
2
π
+
α
,
δ
=
3
π
−
α
∴
E
=
4
sin
α
2
+
3
sin
(
π
2
−
α
2
)
+
2
sin
(
π
+
α
2
)
+
sin
(
3
π
2
−
α
2
)
=
4
sin
α
2
+
3
cos
α
2
−
2
sin
α
2
−
cos
α
2
=
2
(
cos
α
2
+
sin
α
2
)
=
2
√
(
cos
α
2
+
sin
α
2
)
2
=
2
√
1
+
sin
α
=
2
√
1
+
λ
.
If
0
≤
x
≤
π
and
81
sin
2
x
+
81
cos
2
x
=
30
, then x is equal to.
Report Question
0%
π
/
6
0%
π
/
3
0%
5
π
/
6
0%
2
π
/
3
0%
All correct
Explanation
Put
cos
2
x
=
1
−
sin
2
x
If
y
=
81
sin
2
x
then
y
+
81
y
=
30
y
2
−
30
y
+
81
=
0
,
y
=
27
,
3
3
4
sin
2
x
=
3
3
,
3
1
∴
sin
2
x
=
3
4
,
1
4
∴
sin
x
=
√
3
2
,
1
2
as
sin
x
is
+
ive in the given interval
0
<
x
<
π
∴
x
=
π
3
,
π
−
π
3
=
2
π
3
,
π
6
,
π
−
π
6
=
5
π
6
.
Solve:
2
(
cos
x
+
cos
2
x
)
+
sin
2
x
(
1
+
2
cos
x
)
=
2
sin
x
,
−
π
≤
x
≤
π
.
Report Question
0%
−
π
,
−
π
/
2
,
−
π
/
3
,
π
/
3
,
π
.
0%
−
π
,
−
π
/
2
,
π
/
3
,
π
.
0%
−
π
,
−
π
/
3
,
π
/
2
,
π
/
3
,
π
.
0%
None of these
Explanation
2
(
cos
x
+
2
cos
2
x
−
1
)
+
2
sin
x
cos
x
.
(
1
+
2
cos
x
)
−
2
sin
x
=
0
or
2
(
2
cos
2
x
+
cos
x
−
1
)
+
2
sin
x
(
2
cos
2
x
+
cos
x
−
1
)
=
0
2
(
1
+
sin
x
)
(
cos
x
+
1
)
(
2
cos
x
−
1
)
=
0
We have to determine values of x s.t.
−
π
≤
x
≤
π
1
+
sin
x
=
0
∴
sin
x
=
−
1
∴
x
=
2
n
π
+
3
π
2
∴
x
=
−
π
2
,
for
n
=
−
1
∵
−
π
≤
x
<
π
cos
x
=
−
1
=
cos
π
∴
cos
x
=
1
/
2
=
cos
(
π
/
3
)
∴
x
=
2
n
π
±
π
/
3
∴
x
=
π
/
3
,
−
π
/
3
Hence the values of x s.t.
−
π
≤
x
≤
π
are
−
π
,
−
π
/
2
,
−
π
/
3
,
π
/
3
,
π
.
Solve
(
2
+
√
3
)
cos
θ
=
1
−
sin
θ
.
Report Question
0%
θ
=
−
2
n
π
−
2
π
3
0%
θ
=
2
r
π
−
2
π
3
.
0%
θ
=
2
r
π
+
2
π
3
.
0%
θ
=
n
π
−
2
π
3
Explanation
(
2
+
√
3
)
cos
θ
=
1
−
sin
θ
1
−
sin
θ
cos
θ
=
2
+
√
3
(
cos
θ
2
−
sin
θ
2
)
2
cos
2
θ
2
−
sin
2
θ
2
=
2
+
√
3
or
1
−
t
1
+
t
=
tan
75
o
,
t
=
tan
θ
2
or
tan
(
π
4
−
θ
2
)
=
tan
5
π
12
∴
π
4
−
θ
2
=
n
π
+
5
π
12
or
θ
=
−
2
n
π
−
2
π
3
or
θ
=
2
r
π
−
2
π
3
,
r
∈
I
.
A balloon is observed simultaneously from three points A B and C, on a straight road directly under it. The angular elevation at B is twice of what it is at A and the angular elevation at C is thrice of what it is at A. If the distance between A and B is 200 meters and the distance between B and C is 100 meters, then find the height of the balloon.
Report Question
0%
50
√
3
m
0%
50
m
0%
150
√
3
m
0%
100
√
3
m
Explanation
x
=
h
cot
3
α
...............(i)
(
x
+
100
)
=
h
cot
2
α
............ (ii)
(
x
+
300
)
=
h
cot
α
............(iii)
From (i) and (ii)
−
100
=
h
(
cot
3
α
−
cot
2
α
)
=
h
(
s
i
n
2
α
c
o
s
3
α
−
c
o
s
2
α
s
i
n
3
α
)
s
i
n
3
α
s
i
n
2
α
=
s
i
n
(
3
α
−
2
α
)
s
i
n
3
α
s
i
n
2
α
Similarly,
From (ii) and (iii)
−
200
=
h
(
cot
2
α
−
cot
α
)
=
s
i
n
(
2
α
−
α
)
s
i
n
2
α
s
i
n
α
100
=
h
(
sin
α
sin
3
α
sin
2
α
)
on solving
200
=
h
(
sin
α
sin
2
α
sin
α
)
on solving
On dividing the above equations we get,
sin
3
α
sin
α
=
200
100
⇒
sin
3
α
sin
α
=
2
......... (3)
We know that:
s
i
n
3
α
=
3
s
i
n
α
−
4
s
i
n
3
α
From eq (3) we get
⇒
3
sin
α
−
4
sin
3
α
−
2
sin
α
=
0
⇒
4
sin
3
α
−
sin
α
=
0
⇒
sin
α
=
0
or
sin
2
α
=
1
4
sin
2
α
=
1
4
=
sin
2
(
π
6
)
⇒
α
=
π
6
Hence
h
=
200
s
i
n
2
α
=
200
sin
π
3
=
200
√
3
2
=
100
√
3
So the height of the balloon
100
√
3
Solve
tan
θ
+
sec
θ
=
√
3
;
0
≤
θ
≤
2
π
.
Report Question
0%
θ
=
2
n
π
−
π
6
.
0%
θ
=
n
π
+
π
6
.
0%
θ
=
2
n
π
+
5
π
6
.
0%
θ
=
2
n
π
+
π
6
.
Explanation
tan
θ
+
s
e
c
θ
=
√
3
1
+
sin
θ
cos
θ
=
√
3
(
cos
θ
2
+
sin
θ
2
)
2
cos
2
θ
2
−
sin
2
θ
2
=
√
3
or
cos
θ
2
+
sin
θ
2
cos
θ
2
−
sin
θ
2
=
√
3
or
1
+
t
1
−
t
=
√
3
or
tan
(
π
4
+
θ
2
)
=
tan
π
3
∴
θ
2
+
π
4
=
n
π
+
π
3
∴
θ
=
2
n
π
+
π
6
.
If
P
(
4
)
=
3
and
sin
6
x
+
cos
6
x
=
a
b
(
a
,
b
∈
N
)
and
a
,
b
are relatively prime, then
a
+
b
is equal to
Report Question
0%
7
0%
23
0%
16
0%
9
The equation
sin
6
x
+
cos
6
x
=
a
2
has real solution if
Report Question
0%
a
∈
(
−
1
,
1
)
0%
a
∈
(
−
1
,
−
1
2
)
0%
a
∈
(
−
1
2
,
1
2
)
a
∈
(
1
2
,
1
)
0%
a
∈
(
1
2
,
1
)
Explanation
a
2
=
sin
6
x
+
cos
6
x
⇒
a
2
=
(
sin
2
x
+
cos
2
x
)
(
sin
4
x
+
cos
4
x
−
sin
2
x
cos
2
x
)
⇒
a
2
=
(
(
sin
2
x
+
cos
2
x
)
2
−
3
sin
2
x
cos
2
x
)
as(
sin
2
x
+
cos
2
x
=
1
)
⇒
a
2
=
(
1
−
3
sin
2
x
cos
2
x
)
⇒
a
2
=
(
1
−
3
4
sin
2
2
x
)
sin
2
2
x
∈
[
0
,
1
]
∴
1
−
3
4
sin
2
(
2
x
)
∈
[
1
4
,
1
]
1
4
≤
a
2
≤
1
a
∈
[
(
−
∞
,
−
1
2
]
∪
[
1
2
,
∞
)
]
∩
[
−
1
,
1
]
∴
a
∈
[
−
1
,
−
1
2
]
∪
[
1
2
,
1
]
If
sec
A
+
tan
A
=
m
and
sec
A
−
tan
A
=
n
, find the value of
√
m
n
.
Report Question
0%
0
0%
±
1
0%
±
2
0%
±
3
Explanation
Use trigonometry formula:
s
e
c
2
θ
−
t
a
n
2
θ
=
1
s
e
c
A
+
t
a
n
A
=
m
......(1)
s
e
c
A
−
t
a
n
A
=
n
.........(2)
multiply the equations (1) and (2),
(
s
e
c
A
+
t
a
n
A
)
(
s
e
c
A
−
t
a
n
A
)
=
m
n
s
e
c
2
A
−
t
a
n
2
A
=
m
n
1
=
m
n
Therefore,
√
m
n
=
±
1
If
8
sin
(
p
+
2
q
)
=
5
sin
p
, then
3
(
tan
p
+
tan
q
)
=
2
tan
p
cos
2
q
.
Report Question
0%
True
0%
False
The most general value of
θ
satisfying both the equations
sin
θ
=
1
2
,
tan
θ
=
1
√
3
i
s
(
n
∈
I
)
Report Question
0%
2
n
π
+
π
6
0%
(
b
)
2
n
π
−
7
π
6
0%
(
c
)
2
n
π
+
5
π
6
0%
None of these
The expression
tan
A
+
sec
A
−
1
tan
A
−
sec
A
+
1
reduces to :
Report Question
0%
1
+
sin
A
cos
A
0%
1
−
sin
A
cos
A
0%
1
+
cos
A
sin
A
0%
1
+
cos
A
cos
A
Explanation
sec
2
θ
=
1
+
tan
2
θ
⇒
tan
A
+
sec
A
−
1
tan
A
−
sec
A
+
1
⇒
tan
A
+
sec
A
−
(
sec
2
A
−
tan
2
A
)
tan
A
−
sec
A
+
1
⇒
(
tan
A
+
sec
A
)
(
1
−
sec
A
+
tan
A
)
tan
A
−
sec
A
+
1
⇒
tan
A
+
sec
A
⇒
sin
A
cos
A
+
1
cos
A
⇒
1
+
sin
A
cos
A
If
sin
2
θ
+
cos
2
θ
=
1
then
sin
12
θ
+
3
sin
10
θ
+
3
sin
8
θ
+
sin
6
θ
+
2
sin
4
θ
+
2
sin
2
θ
−
4
=
1
Report Question
0%
True
0%
False
If
sin
(
π
cos
x
)
=
cos
(
π
sin
x
)
, then
sin
2
x
=
Report Question
0%
−
3
4
0%
−
4
3
0%
1
3
0%
none of these
Explanation
Given
sin
(
π
cos
x
)
=
cos
(
π
sin
x
)
sin
(
π
c
o
s
x
)
=
sin
(
π
2
−
π
sin
x
)
π
cos
x
=
π
2
−
π
sin
x
cos
x
+
sin
x
=
1
2
Squaring on both sides
sin
2
x
+
cos
2
x
+
2
sin
x
cos
x
=
1
4
1
+
2
sin
x
cos
x
=
1
4
sin
2
x
=
−
3
4
The function
f
(
x
)
=
a
sin
x
+
1
3
sin
3
x
has a maximum at
x
=
π
/
3
, then a equals-
Report Question
0%
−
2
0%
2
0%
−
1
0%
1
Explanation
f
(
x
)
=
a
sin
x
+
1
3
sin
3
x
f
′
(
x
)
=
a
cos
x
+
1
3
cos
3
x
×
3
=
a
cos
x
+
cos
3
x
S
i
n
c
e
f
(
x
)
h
a
s
max
i
m
u
m
a
t
x
=
π
3
s
o
,
f
′
(
π
3
)
=
0
⇒
a
cos
π
3
+
cos
3
×
π
3
=
0
⇒
a
×
1
2
+
(
−
1
)
=
0
⇒
a
2
=
1
a
=
2
If
α
c
o
s
2
3
θ
+
β
c
o
s
4
θ
=
16
c
o
s
6
θ
+
9
c
o
s
2
θ
is an identity then-
Report Question
0%
α
=
1
,
β
=
18
0%
α
=
1
,
β
=
24
0%
α
=
3
,
β
=
24
0%
α
=
4
,
β
=
2
Explanation
α
cos
2
3
θ
+
β
cos
4
θ
=
16
cos
6
θ
+
9
cos
2
θ
⇒
α
(
4
cos
3
θ
−
3
cos
θ
)
2
+
β
cos
4
θ
=
16
cos
6
θ
+
9
cos
2
θ
⇒
α
(
16
cos
6
θ
+
9
cos
2
θ
−
24
cos
4
θ
)
+
β
cos
4
θ
=
16
cos
6
θ
+
9
cos
2
θ
⇒
α
(
16
cos
6
θ
+
9
cos
2
θ
)
−
24
α
cos
4
θ
+
β
cos
4
θ
=
(
16
cos
6
θ
+
9
cos
2
θ
)
⇒
α
(
16
cos
6
θ
+
9
cos
2
θ
)
−
cos
4
θ
(
24
α
−
β
)
=
(
16
cos
6
θ
+
9
cos
2
θ
)
⇒
α
(
16
cos
6
θ
+
9
cos
2
θ
)
−
cos
4
θ
(
24
α
−
β
)
=
(
16
cos
6
θ
+
9
cos
2
θ
)
+
cos
4
θ
×
0
Now, we are going to compare,
α
(
16
cos
6
+
9
cos
2
θ
)
=
16
cos
6
+
9
cos
2
θ
∴
α
=
1
Again,
⇒
−
cos
4
θ
(
24
α
−
β
)
=
cos
4
θ
×
0
⇒
24
(
1
)
−
β
=
0
[ Since,
α
=
1
]
⇒
β
=
24
∴
α
=
1
and
β
=
24
A flag staff on the top of the tower
80
m
e
t
e
r
high, subtends an angle
tan
−
1
(
1
9
)
at point on the ground
100
m
e
t
e
r
s
away from the foot of the tower. Find the height of the flag-staff.
Report Question
0%
20
m
0%
30
m
0%
25
m
0%
35
m
Explanation
→
Let, height of the flag stuff be
x
.
→
Angle subtended by the tower.
∴
θ
=
tan
−
1
(
80
100
)
=
38.7
degree.
→
Angle subtended by the flag stuff
∴
tan
−
1
(
7
/
9
)
=
6.3
degree.
→
total angle subtended
=
38.7
+
6.3
=
45
degree.
→
As shown in triangle
tan
45
=
x
+
80
100
∴
1
=
x
+
80
100
∴
x
=
100
−
80
∴
x
=
20
If
x
=
2
(
sin
1
0
+
sin
2
0
+
sin
3
0
+
.
.
.
.
.
.
.
+
sin
89
0
)
2
(
cos
1
0
+
cos
2
0
+
.
.
.
.
.
.
.
.
.
.
.
.
.
cos
44
0
)
+
1
, then the value of
log
x
2
is equal
Report Question
0%
0
0%
1
2
0%
1
0%
2
If
A
+
B
+
C
=
π
, then
sin
4
A
+
sin
4
B
+
sin
4
C
=
3
2
+
2
cos
A
cos
B
cos
C
+
1
2
cos
2
A
cos
2
B
cos
2
C
Report Question
0%
True
0%
False
Explanation
We have,
A
+
B
+
C
=
π
We know that
sin
2
x
=
(
1
−
cos
2
x
2
)
sin
4
x
=
(
1
−
cos
2
x
2
)
2
cos
2
A
+
cos
2
B
+
cos
2
C
=
−
1
−
4
cos
A
cos
B
cos
C
.
.
.
.
.
.
.
.
(
1
)
cos
2
2
A
+
cos
2
2
B
+
cos
2
2
C
=
1
+
2
cos
2
A
cos
2
B
cos
2
C
.
.
.
.
.
.
.
.
(
2
)
Now,
L.H.S
=
sin
4
A
+
sin
4
B
+
sin
4
C
=
(
1
−
cos
2
A
2
)
2
+
(
1
−
cos
2
B
2
)
2
+
(
1
−
cos
2
C
2
)
2
=
1
2
[
1
+
cos
2
2
A
−
2
cos
2
A
+
1
+
cos
2
2
B
−
2
cos
2
B
+
1
+
cos
2
2
C
−
2
cos
2
C
]
=
1
2
[
3
+
(
cos
2
2
A
+
cos
2
2
B
+
cos
2
2
C
)
−
2
(
cos
2
A
+
cos
2
B
+
cos
2
C
)
]
From equations
(
1
)
and
(
2
)
=
1
2
[
3
+
(
1
+
cos
2
A
cos
2
B
cos
2
C
)
−
2
(
−
1
−
4
cos
A
cos
B
cos
C
)
]
=
1
2
[
4
+
cos
2
A
cos
2
B
cos
2
C
+
2
+
8
cos
A
cos
B
cos
C
]
=
1
2
[
6
+
cos
2
A
cos
2
B
cos
2
C
+
8
cos
A
cos
B
cos
C
]
=
3
2
+
2
cos
A
cos
B
cos
C
+
1
2
cos
2
A
cos
2
B
cos
2
C
R.H.S
Hence, proved.
If
x
∈
(
π
,
2
π
)
and
cos
x
+
sin
x
=
1
2
, then the value of
tan
x
is
Report Question
0%
4
−
√
7
3
0%
√
7
−
4
3
0%
−
4
+
√
7
3
0%
−
(
4
+
√
7
3
)
Explanation
cos
x
+
sin
x
=
1
2
x
∈
(
π
,
2
π
)
divide by
cos
x
1
+
sin
x
cos
x
=
1
2
cos
x
⇒
1
+
tan
x
=
1
2
sec
x
[we know
sec
2
x
−
tan
2
x
=
1
]
⇒
1
+
tan
x
=
1
2
√
1
+
tan
2
x
Let
tan
x
=
t
1
+
t
=
√
1
+
t
2
2
(
2
(
1
+
t
)
)
2
=
1
+
t
2
⇒
3
t
2
+
8
t
+
3
=
0
∴
t
=
−
8
±
√
8
2
−
4
(
3
)
(
3
)
2
×
3
⇒
−
8
±
2
√
7
6
⇒
t
=
−
4
±
√
7
3
∴
tan
x
=
−
4
±
√
7
3
but
x
∈
(
π
,
2
π
)
∴
tan
x
=
−
4
+
√
7
3
.
If
(
1
−
cos
A
)
2
=
x
then find the value of
x
is
Report Question
0%
cos
2
(
A
2
)
0%
√
sin
(
A
2
)
0%
√
cos
(
A
2
)
0%
sin
2
(
A
2
)
Explanation
⟹
1
−
cos
A
2
=
x
⟹
2
sin
2
A
2
2
=
x
⟹
x
=
sin
2
A
2
If
sin
θ
=
n
sin
(
θ
+
2
α
)
then
tan
(
θ
+
α
)
=
Report Question
0%
1
+
n
1
−
n
tan
α
0%
1
−
n
1
+
n
tan
α
0%
tan
α
0%
None
Explanation
sin
θ
=
n
sin
(
θ
+
2
α
)
sin
θ
sin
(
θ
+
2
α
)
=
n
apply componendo dividendo rule,
sin
θ
+
sin
(
θ
+
2
α
)
sin
θ
−
sin
(
θ
+
2
α
)
=
n
+
1
n
−
1
apply
sin
C
+
sin
D
and
sin
C
−
sin
D
2
sin
(
θ
+
α
)
cos
α
2
sin
α
cos
(
θ
+
α
)
=
n
+
1
n
−
1
tan
(
θ
+
α
)
tan
α
=
n
+
1
n
−
1
tan
(
θ
+
α
)
=
n
+
1
n
−
1
tan
α
Total number of solution of the equation
3
x
+
2
tan
x
=
5
π
2
in
x
ϵ
[
0
,
2
π
]
is equal to
Report Question
0%
1
0%
2
0%
3
0%
4
Explanation
Given equation
3
x
+
2
tan
x
=
5
π
2
2
tan
x
=
5
π
2
−
3
x
tan
x
=
5
π
4
−
3
x
2
y
=
tan
x
=
5
π
4
−
3
x
2
Using graph we find point intersection of
y
=
tan
x
;
y
=
5
π
4
−
3
x
2
(
m
=
−
3
2
;
C
=
5
π
4
)
x
−
i
n
t
e
r
c
e
p
t
:
y
=
0
;
3
x
2
=
5
π
4
(
x
=
5
π
6
,
y
=
0
)
y
−
i
n
t
e
r
c
e
p
t
x
=
0
;
y
=
5
π
4
(
x
=
0
;
y
=
5
π
4
)
Given region of graph
[
0
,
2
π
]
Number of solution = Number of intersections
=
′
3
′
N
u
m
b
e
r
o
f
s
o
l
u
t
i
o
n
s
=
3
sin
−
1
x
+
sin
−
1
1
x
+
cos
−
1
x
+
cos
−
1
1
x
,
x
∉
±
1
is equal to?
Report Question
0%
π
0%
π
2
0%
3
π
2
0%
None of these
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page