CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 8 - MCQExams.com

If $$\sin { \alpha  } =12/13\left( 0<\alpha <\pi /2 \right)$$ and
$$\cos { \beta  } =-\dfrac { 3 }{ 5 } \left( \pi <\beta <\dfrac { 3 }{ 2 } \pi  \right) $$, the value of $$\sin { \left( \alpha +\beta  \right)  }$$ is
  • $$\dfrac{-56}{65}$$
  • $$\dfrac{16}{65}$$
  • $$\dfrac{56}{65}$$
  • $$\dfrac{-16}{65}$$
The maximum value of the expression $$\dfrac { 1 }{ \sin ^{ 2 }{ \theta  } +3\sin { \theta  } \cos { \theta  } +5\cos ^{ 2 }{ \theta  }  } $$ is 
  • $$2$$
  • $$3$$
  • $$\dfrac { 1 }{ 2 } $$
  • $$\dfrac { 1 }{ 3 } $$
If $$\cos { \left( A-B \right)  } =3/5$$ and $$\tan { A } \tan { B } =2$$, then
  • $$\cos { A } \cos { B } =1/5$$
  • $$\sin { A } \sin { B } =-2/5$$
  • $$\cos { \left( A+B \right) } =-1/5$$
  • $$\sin { A } \cos { B } =4/5$$
The number of solutions of the pair of equations.
$$2\sin^2\theta -\cos 2\theta =0$$
$$2\cos^2\theta -3\sin \theta =0$$
in the interval $$[0, 2\pi]$$ is?
  • Zero
  • One
  • Two
  • Four
State  true or false
If sin x = sin$$\lambda$$,  then the values of sin(x/3)  are sin ($$\lambda$$/3), sin [$$(\pi- \lambda)$$ /3] and - sin [$$(\pi+\lambda)$$ /3]
  • True
  • False
If $$2\sin^2\theta -5\sin \theta +2 > 0, \theta \in (0, 2\pi)$$, then $$\theta \in$$
  • $$\left(\dfrac{5\pi}{6}, 2\pi\right)$$
  • $$\left(0, \dfrac{\pi}{6}\right)\cup \left(\dfrac{5\pi}{6}, 2\pi\right)$$
  • $$\left(0, \dfrac{\pi}{6}\right)$$
  • $$\left(\dfrac{\pi}{80}, \dfrac{\pi}{6}\right)$$
If $$\alpha, \beta, \gamma, \delta$$ are the smallest $$+$$ive angles in ascending order of magnitude which have their sines equal to a $$+$$ive quantity $$\lambda$$ then the value of $$4\sin \dfrac{\alpha}{2}+3\sin \dfrac{\beta}{2}+2\sin \dfrac{\gamma}{2}+\sin \dfrac{\delta}{2}=$$.
  • $$2\sqrt{1-\lambda}$$
  • $$2\sqrt{1+\lambda}$$
  • $$2\sqrt{\lambda}$$
  • $$2\sqrt{\lambda +2}$$
If $$0\leq x\leq \pi$$ and $$81^{\sin^2x}+81^{\cos^2x}=30$$, then x is equal to.
  • $$\pi /6$$
  • $$\pi /3$$
  • $$5\pi /6$$
  • $$2\pi /3$$
  • All correct
Solve: $$2(\cos x+\cos 2x)+\sin 2x(1+2\cos x)=2\sin x, -\pi \leq x \leq \pi$$.
  • $$-\pi, -\pi /2, -\pi /3, \pi/3, \pi$$.
  • $$-\pi, -\pi /2, \pi /3, \pi$$.
  • $$-\pi, -\pi /3, \pi /2, \pi/3, \pi$$.
  • None of these 
Solve $$(2+\sqrt{3})\cos\theta =1-\sin \theta$$.
  • $$\theta =-2n\pi -\dfrac{2\pi}{3}$$

  • $$\theta =2r\pi -\dfrac{2\pi}{3}$$.
  • $$\theta =2r\pi +\dfrac{2\pi}{3}$$.
  • $$\theta =n\pi -\dfrac{2\pi}{3}$$
A balloon is observed simultaneously from three points A B and C, on a straight road directly under it. The angular elevation at B is twice of what it is at A and the angular elevation at C is thrice of what it is at A. If the distance between A and B is 200 meters and the distance between B and C is 100 meters, then find the height of the balloon.
  • $$50 \sqrt{3}$$m
  • $$50 $$m
  • $$150 \sqrt{3}$$m
  • $$100 \sqrt{3}$$m
Solve $$\tan \theta +\sec \theta =\sqrt{3}; 0\leq \theta \leq 2\pi$$.
  • $$\theta =2n\pi -\dfrac{\pi}{6}$$.
  • $$ \theta =n\pi +\dfrac{\pi}{6}$$.
  • $$ \theta =2n\pi +\dfrac{5\pi}{6}$$.
  • $$ \theta =2n\pi +\dfrac{\pi}{6}$$.
If $$P\left( 4 \right) = 3$$ and $$\displaystyle {\sin ^6}x + {\cos ^6}x = {a \over b}\left( {a,b \in N} \right)$$ and $$a,b$$ are relatively prime, then $$a + b$$ is equal to
  • $$7$$
  • $$23$$
  • $$16$$
  • $$9$$
The equation $${\sin ^6}x + {\cos ^6}x = {a^2}$$ has real solution if 
  • $$a \in \left( { - 1,1} \right)$$
  • $$a \in \left( { - 1, - {1 \over 2}} \right)$$
  • $$\eqalign{
    & a \in \left( { - {1 \over 2},{1 \over 2}} \right) \cr
    & a \in \left( {{1 \over 2},1} \right) \cr} $$
  • $$a \in \left( {{1 \over 2},1} \right)$$
If $$\sec A + \tan A = m $$ and $$ \sec A - \tan A = n$$, find the value of $$\sqrt{mn}$$.
  • $$0$$
  • $$\pm 1$$
  • $$\pm 2$$
  • $$\pm 3$$
If $$8\sin(p+2q)= 5\sin p$$ , then  $$3(\tan p+\tan q)= \dfrac{2\tan p}{\cos^2q}$$.
  • True
  • False
The most general value of $$\theta $$ satisfying both the equations $$\sin \theta  = \frac{1}{2},\tan \theta  = \frac{1}{{\sqrt 3 }}\;is\;\left( {n \in I} \right)$$ 
  • $$2n\pi + \frac{\pi }{6}$$
  • $$\left( b \right)2n\pi - \frac{{7\pi }}{6}$$
  • $$\left( c \right)2n\pi + \frac{{5\pi }}{6}$$
  • None of these
The expression $$\dfrac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}}$$ reduces to :
  • $$\dfrac {1+\sin A}{\cos A}$$
  • $$\dfrac {1-\sin A}{\cos A}$$
  • $$\dfrac {1+\cos A}{\sin A}$$
  • $$\dfrac {1+\cos A}{\cos A}$$
If $$\sin^2 \theta +\cos^2\theta =1$$ then 
$$\sin^{12}\theta +3 \sin^{10}\theta +3 \sin^8\theta +\sin^6\theta +2\sin^4\theta +2\sin^2\theta -4=1$$
  • True
  • False
If $$\sin \left( {\pi \cos x} \right) = \cos \left( {\pi \sin x} \right)$$, then $$\sin 2x = $$
  • $$ -\dfrac{3}{4}$$
  • $$ -\dfrac{4}{3}$$
  • $$ \dfrac{1}{3}$$
  • none of these
The function $$f(x)=a \sin x+\dfrac {1}{3}\sin 3x$$ has a maximum at $$x=\pi/3$$, then a equals-
  • $$-2$$
  • $$2$$
  • $$-1$$
  • $$1$$
If $$\alpha cos^23\theta +\beta cos^4\theta= 16 cos^6\theta + 9 cos^2\theta$$ is an identity then-
  • $$\alpha = 1, \beta = 18$$
  • $$\alpha = 1, \beta = 24$$
  • $$\alpha = 3, \beta = 24$$
  • $$\alpha = 4, \beta = 2$$
A flag staff on the top of the tower $$80\ meter$$ high, subtends an angle $$\tan^{-1}\left(\dfrac{1}{9}\right)$$ at point on the ground $$100\ meters$$ away from the foot of the tower. Find the height of the flag-staff.
  • $$20\ m$$
  • $$30\ m$$
  • $$25\ m$$
  • $$35\ m$$
If  $$x=\dfrac{{2\left( {\sin {1^0} + \sin {2^0} + \sin {3^0} + ....... + \sin {{89}^0}} \right)}}{{2\left( {\cos {1^0} + \cos {2^0} + .............\cos {{44}^0}} \right) + 1}}$$ , then the value of $${\log_x}2$$ is equal
  • $$0$$
  • $$\dfrac { 1 }{ 2 } $$
  • $$1$$
  • $$2$$
If $$A + B + C = \pi $$, then $${\sin ^4}A + {\sin ^4}B + {\sin ^4}C = \cfrac{3}{2} + 2\cos A\cos B\cos C + \cfrac{1}{2}\cos 2A\cos 2B\cos 2C$$
  • True
  • False
If $$x \in (\pi, 2\pi)$$ and $$\cos x + \sin x = \dfrac{1}{2}$$, then the value of $$\tan x$$ is
  • $$\dfrac{4 - \sqrt{7}}{3}$$
  • $$\dfrac{\sqrt{7} - 4}{3}$$
  • $$\dfrac{-4 + \sqrt{7}}{3}$$
  • $$-\left(\dfrac{4 + \sqrt{7}}{3}\right)$$
If $$\dfrac{{\left( {1 - \cos A} \right)}}{2} = x$$ then find the value of x is
  • $${\cos ^2}\left( {\dfrac{A}{2}} \right)$$
  • $$\sqrt {\sin \left( {\dfrac{A}{2}} \right)} $$
  • $$\sqrt {\cos \left( {\dfrac{A}{2}} \right)} $$
  • $${\sin ^2}\left( {\dfrac{A}{2}} \right)$$
If $$\sin \theta = n \sin(\theta + 2 \alpha) $$ then $$\tan (\theta + \alpha)$$ =
  • $$\dfrac{1 + n}{1 - n} \tan \, \alpha$$
  • $$\dfrac{1 - n}{1 + n} \tan \, \alpha$$
  • $$\tan \, \alpha$$
  • None
Total number of solution of the equation $$3x+2\tan x=\dfrac {5\pi}{2}$$ in $$x\ \epsilon [0,2\pi]$$ is equal to
  • $$1$$
  • $$2$$
  • $$3$$
  • $$4$$
$$\sin^{-1}x+\sin^{-1}\dfrac{1}{x}+\cos^{-1}x+\cos^{-1}\dfrac{1}{x}, x\notin \pm 1$$ is equal to?
  • $$\pi$$
  • $$\dfrac{\pi}{2}$$
  • $$\dfrac{3\pi}{2}$$
  • None of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers