Explanation
Consider the given equation.
$${{\sin }^{50}}x-{{\cos }^{50}}x=1$$
$${{\sin }^{50}}x=1+{{\cos }^{50}}x$$ …….. (1)
Here, $${{\cos }^{50}}x$$ is always positive. So, the maximum value of $${{\sin }^{50}}x$$ is $$1$$.
So,
$${{\cos }^{50}}x$$ must be zero.
Hence, $${{\cos }^{50}}x=0$$
$$x=\left( 2n+1 \right)\dfrac{\pi }{2},$$ where $$n\in I$$
$$x=n\pi +\dfrac{\pi}{2}$$
Hence, this is the answer.
Consider the given equation,
$$\tan \left( \dfrac{\pi }{4}+\theta \right)=3\tan 3\theta $$
Using identity ,
$$ \tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}\,\,\,\And \tan 3A=\dfrac{3\tan A-{{\tan }^{3}}A}{1-3{{\tan }^{2}}A} $$
$$ \Rightarrow \dfrac{\tan \left( \dfrac{\pi }{4} \right)+\tan \theta }{1-\tan \left( \dfrac{\pi }{4} \right)\tan \theta }=3\left( \dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } \right) $$
$$ \Rightarrow \dfrac{1+\tan \theta }{1-\tan \theta }=\dfrac{9\tan \theta-3{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta } $$
$$ \Rightarrow \left( 1+\tan \theta \right)\left( 1-3{{\tan }^{2}}\theta \right)=\left( 1-\tan \theta \right)\left( 9\tan \theta -3{{\tan }^{3}}\theta \right) $$
$$ \Rightarrow 3{{\tan }^{4}}\theta -6{{\tan }^{2}}\theta +8\tan \theta -1=0 $$
As $$a,b,c,t,=$$ are roots of this equation ,
Hence, sum of roots ,
$$\tan \left( a \right)+\tan \left( b\right)+\tan \left( c\right)+\tan \left(t\right)=$$ $$-\dfrac{coeficient\,of\,{{\tan }^{3}}\theta }{coeficient\,of\,{{\tan }^{4}}\theta }$$ =$$-\dfrac{0}{1}$$
$$\tan \left( a\right)+\tan \left(b\right)+\tan \left( c\right)+\tan \left( t \right)=0$$
We have,
$$\dfrac{x}{y}=\dfrac{\cos A}{\cos B}$$
$$x=\dfrac{y\cos A}{\cos B}$$
Since,
$$=\dfrac{x\tan A+y\tan B}{x+y}$$…….. (1)
On putting the value of $$x$$ in equation (1), we get
$$ =\dfrac{\dfrac{y\cos A}{\cos B}\times \dfrac{\sin A}{\cos A}+\dfrac{y\sin B}{\cos B}}{\dfrac{y\cos A}{\cos B}+y} $$
$$ =\dfrac{\dfrac{ysinA}{\cos B}+\dfrac{y\sin B}{\cos B}}{\dfrac{y\cos A+y\cos B}{\cos B}} $$
$$ =\dfrac{\dfrac{y\left( sinA+\sin B \right)}{\cos B}}{\dfrac{y\left( \cos A+\cos B \right)}{\cos B}} $$
$$ =\dfrac{\left( sinA+\sin B \right)}{\left( \cos A+\cos B \right)} $$
We know that
$$ \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cdot \cos \left( \dfrac{A-B}{2} \right) $$
$$ \cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cdot \cos \left( \dfrac{A-B}{2} \right) $$
Therefore,
$$ =\dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cdot \cos \left( \dfrac{A-B}{2} \right)}{2\cos \left( \dfrac{A+B}{2} \right)\cdot \cos \left( \dfrac{A-B}{2} \right)} $$
$$ =\tan \left( \dfrac{A+B}{2} \right) $$
Hence, the value is $$\tan \left( \dfrac{A+B}{2} \right)$$.
$$ \sin {{27}^{0}}-\cos {{27}^{0}} $$
$$ \Rightarrow \sin {{27}^{0}}-\cos \left( {{90}^{0}}-{{63}^{0}} \right) $$
$$ \Rightarrow \sin {{27}^{0}}-\sin {{63}^{0}} $$
$$ \Rightarrow 2\cos \left( \dfrac{{{27}^{0}}+{{63}^{0}}}{2} \right)\sin \left( \dfrac{{{27}^{0}}-{{63}^{0}}}{2} \right) $$
$$ \Rightarrow 2\cos {{45}^{0}}\sin \left( -{{36}^{0}} \right) $$
$$ \Rightarrow 2\times \dfrac{1}{\sqrt{2}}\times -\left[ \dfrac{\sqrt{10-2\sqrt{5}}}{4} \right] $$
$$ \Rightarrow -\dfrac{1}{\sqrt{2}}\times \sqrt{2}\left( \dfrac{\sqrt{5-\sqrt{5}}}{2} \right) $$
$$ \Rightarrow -\dfrac{\sqrt{5-\sqrt{5}}}{2} $$
Hence, this is the answer
option $$(B)$$ is correct.
$$ cos^2{{73}^{0}}+co{{s}^{2}}{{47}^{0}}-si{{n}^{2}}{{43}^{0}}+si{{n}^{2}}{{107}^{0}} $$
$$ \Rightarrow co{{s}^{2}}{{73}^{0}}+co{{s}^{2}}{{47}^{0}}-si{{n}^{2}}\left( {{90}^{0}}-{{47}^{0}} \right)+si{{n}^{2}}\left( {{180}^{0}}-{{73}^{0}} \right) $$
$$ \Rightarrow \left( co{{s}^{2}}{{73}^{0}}+{{\sin }^{2}}{{73}^{0}} \right)+co{{s}^{2}}{{47}^{0}}-{{\cos }^{2}}{{47}^{0}} $$
$$ \Rightarrow 1 $$
Please disable the adBlock and continue. Thank you.