Explanation
Consider the given equation.
sin50x−cos50x=1
sin50x=1+cos50x …….. (1)
Here, cos50x is always positive. So, the maximum value of sin50x is 1.
So,
cos50x must be zero.
Hence, cos50x=0
x=(2n+1)π2, where n∈I
x=nπ+π2
Hence, this is the answer.
Consider the given equation,
tan(π4+θ)=3tan3θ
Using identity ,
tan(A+B)=tanA+tanB1−tanAtanB&tan3A=3tanA−tan3A1−3tan2A
⇒tan(π4)+tanθ1−tan(π4)tanθ=3(3tanθ−tan3θ1−3tan2θ)
⇒1+tanθ1−tanθ=9tanθ−3tan3θ1−3tan2θ
⇒(1+tanθ)(1−3tan2θ)=(1−tanθ)(9tanθ−3tan3θ)
⇒3tan4θ−6tan2θ+8tanθ−1=0
As a,b,c,t,= are roots of this equation ,
Hence, sum of roots ,
tan(a)+tan(b)+tan(c)+tan(t)= −coeficientoftan3θcoeficientoftan4θ =−01
tan(a)+tan(b)+tan(c)+tan(t)=0
We have,
xy=cosAcosB
x=ycosAcosB
Since,
=xtanA+ytanBx+y…….. (1)
On putting the value of x in equation (1), we get
=ycosAcosB×sinAcosA+ysinBcosBycosAcosB+y
=ysinAcosB+ysinBcosBycosA+ycosBcosB
=y(sinA+sinB)cosBy(cosA+cosB)cosB
=(sinA+sinB)(cosA+cosB)
We know that
sinA+sinB=2sin(A+B2)⋅cos(A−B2)
cosA+cosB=2cos(A+B2)⋅cos(A−B2)
Therefore,
=2sin(A+B2)⋅cos(A−B2)2cos(A+B2)⋅cos(A−B2)
=tan(A+B2)
Hence, the value is tan(A+B2).
sin270−cos270
⇒sin270−cos(900−630)
⇒sin270−sin630
⇒2cos(270+6302)sin(270−6302)
⇒2cos450sin(−360)
⇒2×1√2×−[√10−2√54]
⇒−1√2×√2(√5−√52)
⇒−√5−√52
Hence, this is the answer
option (B) is correct.
cos2730+cos2470−sin2430+sin21070
⇒cos2730+cos2470−sin2(900−470)+sin2(1800−730)
⇒(cos2730+sin2730)+cos2470−cos2470
⇒1
Please disable the adBlock and continue. Thank you.