CBSE Questions for Class 11 Engineering Maths Trigonometric Functions Quiz 9 - MCQExams.com

The number of solution of the equation $$\sin 5x \cos 3x=\sin 6x \cos 2x$$ in the interval $$[0,\pi]$$ is
  • $$2$$
  • $$3$$
  • $$4$$
  • $$5$$
The general solution of the equation $$\tan^{2}\theta+2\sqrt {3} \tan \theta=1$$
  • $$\theta=\dfrac {\pi}{2}$$
  • $$\left(n+\dfrac {1}{2}\right)\pi$$
  • $$(6n+1)\dfrac {\pi}{12}$$
  • $$\dfrac {n \pi}{12}$$
Find  $$\dfrac{\sin^2A-\sin^2B}{\sin A\cos A-\sin B\cos B}=?$$.
  • $$\cos (A+B)$$
  • $$\tan (A-B)$$
  • $$\cot (A+B)$$
  • $$\tan (A+B)$$
$$2\sin 2\beta + 4\cos (\alpha + \beta)\sin \alpha \sin \beta + \cos 2(\alpha + \beta)$$
  • $$\sin 2\alpha$$

  • $$\cos \, 2 \beta$$
  • $$\cos \, 2 \alpha$$
  • $$\sin \, 2 \beta$$
If $$\tan\theta=\dfrac{a}{b}$$ then $$\dfrac{a\sin\theta-b\cos\theta}{a\sin\theta +b\cos\theta}=$$
  • $$\dfrac{a^2b^2}{a^2+b^2}$$
  • $$\dfrac{ab}{a^2+b^2}$$
  • $$\dfrac{a^2b^2}{a+b}$$
  • None of these 
The expression $$3\left[ \sin ^{ 4 }{ \left\{ \dfrac { 3 }{ 2 } \pi -\alpha  \right\}  } +\sin ^{ 4 }{ \left( 3\pi +\alpha  \right)  }  \right] -2\left[ \sin ^{ 6 }{ \left\{ \dfrac { 1 }{ 2 } \pi +\alpha  \right\}  } +\sin ^{ 6 }{ \left( 5\pi -\alpha  \right)  }  \right] $$ is equal to 
  • $$0$$
  • $$1$$
  • $$3$$
  • $$\sin { 4\alpha } +\cos { 6\alpha } $$
If $$\sin { x } +\cos { x } =a,$$ then $$\left| \sin { x } -\cos { x }  \right| $$ equals
  • $$\sqrt { 2-{ a }^{ 2 } } $$
  • $$\sqrt { 2+{ a }^{ 2 } } $$
  • $$\sqrt { { a }^{ 2 }-2 } $$
  • $$\sqrt { { a }^{ 2 }-4 } $$
If $$\tan x+\tan 2x+\tan 8x=\tan x.\tan 2x.\tan 8x$$ then the general solution of $$x=$$ 
  • $$n \pi,\forall n \epsilon Z$$
  • $$n \pi,\dfrac {\pi}{4},\forall n \epsilon Z$$
  • $$\dfrac {n \pi}{11},\forall n \epsilon Z$$
  • $$n \pi,\dfrac {\pi}{3},\forall n \epsilon Z$$
The value of $$\theta$$ satisfying $$\sin{7\theta}=\sin{4\theta}-\sin{\theta}$$ and $$\theta<0<\pi/2$$ are-
  • $$\dfrac{\pi}{9}, \dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{3}, \dfrac{\pi}{9}$$
  • $$\dfrac{\pi}{6}, \dfrac{\pi}{9}$$
  • $$\dfrac{\pi}{3}, \dfrac{\pi}{4}$$
Evaluate $$\tan \left[ {\dfrac{\pi }{4}\, + \,\dfrac{1}{2}\,{{\cos }^{ - 1}}\,\dfrac{a}{b}} \right]\, + \,\tan \left[ {\dfrac{\pi }{4}\, - \,\dfrac{1}{2}{{\cos }^{ - 1}}\,\dfrac{a}{b}} \right]\, = $$
  • $$\dfrac{{2a}}{b}$$
  • $$\dfrac{{2b}}{a}$$
  • $$\dfrac{a}{b}$$
  • $$\dfrac{b}{a}$$
If $$A+B+C=\pi$$ then $$\sin^3A \cos(B-C)+ \sin^3\cos(C-A) + \sin^3C \cos (A-B) $$ is equal to
  • $$3\sin A \sin B \sin C.$$
  • $$6\sin A \sin B \sin C.$$
  • $$4\sin A \sin B \sin C.$$
  • $$0$$
If $$(\cos\theta +\cos 2\theta)^3=\cos^3\theta +\cos^32\theta$$, then the least positive value of $$\theta$$ is equal to?
  • $$\dfrac{\pi}{6}$$
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{\pi}{2}$$
General solution of $$\sin ^{ 3 }{ x } +\cos ^{ 3 }{ x } +\frac { 3 }{ 2 } \sin { 2x } =1$$ 
  • $$x=n\pi$$ where $$n$$ is even integer
  • $$x=n\pi +\dfrac{\pi}{2}$$ where $$n$$ is odd integer
  • $$x=2n\pi$$ where $$n$$ is odd integer
  • $$x=n\pi -\dfrac{\pi}{2}$$ where $$n$$ is even integer
The general solution of the equation $${\sin ^{50}}x - {\cos ^{50}}x = 1$$
  • $$2n\pi + \frac{\pi }{2}$$
  • $$2n\pi + \frac{\pi }{3}$$
  • $$n\pi + \frac{\pi }{2}$$
  • $$n\pi + \frac{\pi }{3}$$
If $$sin 2 \theta = cos 3 \theta \, and \, \theta $$ is acute then $$sin 5 \theta$$  = ...
  • 0
  • 1
  • -1
  • 2
If $$cos \alpha + cos \beta = a , \, sin \alpha + sin \beta = b \, and \, \alpha - \beta  = 2 \theta \, then \, \dfrac{cos \, 3 \theta }{cos \, \theta}$$ =
  • $$a^2 + b^2 - 2=0$$
  • $$a^2 + b^2 - 3 =0$$
  • $$3 - a^2 - b^2=0$$
  • $$2 - a^2 - b^2=0$$
General solution of equation $$\cot \theta  + \text{cosec}\theta  = \sqrt 3 $$ is
  • $$2n\pi + \frac{\pi }{4}$$
  • $$\left( {2n - 1} \right)\pi $$
  • $$2n\pi + \frac{\pi }{3}$$
  • $$2n\pi + \frac{\pi }{6}$$
If $$a$$, $$b$$, $$c$$, $$t$$ are the solution of the equation $$\tan\left(\theta+\dfrac{\pi}{4}\right)=3\ tan 3\theta$$, no two of which have equal tangents . Then, the value of $$\tan a+\tan b+\tan c+\tan t=$$
  • $$1/3$$
  • $$8/3$$
  • $$-8/3$$
  • $$0$$
If $$\alpha$$ is a root of $$25\cos^2\theta +5\cos\theta -12=0, \dfrac{\pi}{2} < \alpha < \pi$$, then $$\sin 2θ $$ is equal to?
  • $$\dfrac{24}{25}$$
  • $$-\dfrac{24}{25}$$
  • $$\dfrac{13}{18}$$
  • $$-\dfrac{13}{18}$$
If $$\dfrac{x}{y} = \dfrac{{\cos \,A}}{{\cos \,B}}$$ then $$\dfrac{{x\tan A + y\tan B}}{{x + y}} = $$ 
  • $$\cot\dfrac{A+B}{2}$$
  • $$\cot\dfrac{A-B}{2}$$
  • $$\tan\dfrac{A-B}{2}$$
  • $$\tan\dfrac{A+B}{2}$$
If $$\tan \theta  + \tan 4\theta  + \tan 7 = \tan \theta \tan 4\theta \tan 7\theta ,\,\,then\,\,\theta  = $$
  • $$\dfrac{{n\pi }}{4}$$
  • $$\dfrac{{n\pi }}{7}$$
  • $$\dfrac{{n\pi }}{{12}}$$
  • $$n\pi $$
 the following is 
$$\frac{cos(A-B)}{cos(A+B)}= \frac{cosA. cotB +2}{costA. costB-1}$$
  • True
  • False
$$\cot{\dfrac{\pi}{20}}\cot{\dfrac{3\pi}{20}}\cot{\dfrac{5\pi}{20}}\cot{\dfrac{7\pi}{20}}\cot{\dfrac{9\pi}{20}}$$ is equal to 
  • $$-1$$
  • $$0$$
  • $$1$$
  • None of these
If $$\tan \theta + \sec \theta = \sqrt{3}$$, then the principal value of $$\left(\theta + \dfrac{\pi}{6}\right)$$ is
  • $$\dfrac{\pi}{3}$$
  • $$\dfrac{\pi}{4}$$
  • $$\dfrac{2\pi}{3}$$
  • $$\dfrac{\pi}{2}$$
The value of $$\sin {27^ \circ } - \cos {27^ \circ }$$ is equal to 
  • $$ - \dfrac{{\sqrt {3 - \sqrt 5 } }}{2}$$
  • $$ - \dfrac{{\sqrt {5 - \sqrt 5 } }}{2}$$
  • $$ - \dfrac{{\sqrt 5 - 1}}{{2\sqrt 2 }}$$
  • $$ \dfrac{{\sqrt {3 - \sqrt 5 } }}{2}$$
$$\sin\theta=\dfrac{1}{2}\implies  $$
$$ \theta =2n\pi +\dfrac \pi 6$$
  • True
  • False
The value of $${\cos ^2}{73^ \circ } + {\cos ^2}{47^ \circ } - {\sin ^2}{43^ \circ } + {\sin ^2}{107^ \circ }$$ is equal to :
  • $$1$$
  • $$\dfrac{1}{2}$$
  • $$\dfrac{\sqrt{3}}{2}$$
  • $${\sin ^2}{73^ \circ } + {\sin ^2}{47^ \circ }$$
If $$x= a \sin\theta + c \cos\theta$$ and $$y= a \cos\theta - c \sin\theta$$, then $$x^2+y^2= a^2+ c^2$$.
  • True
  • False
The  equation $$\sin x+2\sin 2x=3+\sin 3x$$ has no solution in $$(0, \pi)$$.
  • True
  • False
Maximum value of $$sin\alpha+sin\beta+2$$ whwre $$\alpha+\beta=120^o$$ & $$\alpha,\beta{\,}\in \left(0,\dfrac{\pi}{2}\right)$$ is-
  • $$cot\dfrac{\pi}{12}$$
  • $$cot\dfrac{\pi}{8}$$
  • $$tan\dfrac{\pi}{12}$$
  • $$tan\dfrac{\pi}{8}$$
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers