Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 10 - MCQExams.com

If the second term of the expansion [a1/13+aa1]n is 14a5/2, then the value of nC3nC2 is .
  • 4
  • 3
  • 12
  • 6
In the expansion of (1+x)n, The binomial coefficients of three consecutive terms are respectively 220, 495 and 795, the value 
  • 10
  • 11
  • 12
  • 13
If the last term in the binomial expansion of (21312)nis(1353)log38 , then the 5th term from the beginning  is
  • 210
  • 420
  • 105
  • none of these
The coefficient of xn in (1x+x22!x33!+...(1)nxnn!)2sequalto
  • (n)nn!
  • (1)n(2)nn!
  • 1(n!)2
  • 1(n!)2
If in the expansion of (1+x)20,the coefficients of rth and (r+4)th terms are equal,then r is equal to
  • 7
  • 8
  • 9
  • 10
if Pn denotes  the product of the binomial coefficients in the expansion of (1+x)n, then Pn+1Pn=?
  • n+1n
  • nnn
  • (n+1)nn!
  • none of these
The term independent of x in the expansion of  (x14)4(x+1x)3
  • 19/16
  • 0
  • 14
  • none of these
If (1+2x+3x2)10=a0+a1x+a2x2+ ...+a20x20, then a1 equals
  • 10
  • 20
  • 210
  • None of these
If the coefficients of (r5)th and (2r1)th terms in the expansion of (1+x)34 are equal, find r.
  • 21
  • 23
  • 14
  • 20
Let 2.20C0+20C1+20C2+.....+20C20. then sum of this series is 
  • 16.222
  • 8.220
  • 8.221
  • 16.221
The greatest term in the expansion of (2x+3y)11 when x = 9 and y = 4 is :
  • (165)(10)8(12)3
  • (330) (18)7(12)4
  • 462(18)8(12)5
  • None of these
The coefficient of x18 in the product (1+x)(1x)10(1+x+x2)9 is?
  • 84
  • 84
  • 126
  • 126
If p is a real number and if the middle term in the expansion of (p2+2)8 is 1120, find p
  • p=±1
  • p=±3
  • p=±5
  • p=±2
Find the 7th term from the end in the expansion of (2x232x)8
  • 4033 x9
  • 4023 x11
  • 4032 x10
  • None of these
If the middle terms in the expansion of (x2+1x)2n is 184756x10, then what is the value of n
  • 10
  • 8
  • 5
  • 4
Find the coefficient of x10 in the expansion of (2x21x)20
  • 20C8.28
  • 20C10.210
  • 20C11.211
  • None of these
The coefficient of x4 in the expansion of (12x)5 is equal to  
  • 40
  • 320
  • 320
  • 80
Sum of last 30 coefficents in the binomial expansion of (1+x)59 is 
  • 229
  • 259
  • 258
  • 259229
  • 260
Find the coefficient of x15 in the expansion of (3x2a3x3)10
  • 4021a6
  • 3023a8
  • 4027a7
  • None of these
If the sum of the coefficients in the expansions of (a2x22ax+1)51 is zero, then a is equal to 
  • 0
  • 1
  • 1
  • 2
  • 2
19!+13!7!+15!5!+17!3!+19! is equal to 
  • 2910!
  • 2108!
  • 2119!
  • 2107!
  • 289!
The arithmetic mean of nC0, nC1, nC2...., nCn is 
  • 2nn+1
  • 2nn
  • 2n1n+1
  • 2n1n
  • 2n+1n
The largest term in the expansion of (2+3x)25 where x = 2 is its
  • 13th term
  • 19th term
  • 20th term
  • 26th term
In the expansion of (1+x)43, the coefficients of the (2r+1)th and the (r + 2)th terms are equal, then the value of r, is
  • 14
  • 15
  • 16
  • 17
The total number of terms in the expansion of (x+a)100+(xa)100 after simplification,
  • 50
  • 51
  • 154
  • 202
The largest term in the expansion of (b2+b2)100 is 
  • b100
  • (b2)100
  • 100C50(b2)100
  • None of these
Which of the following expansion will have term containing x2
  • (x1/5+2x3/5)25
  • (x3/5+2x1/5)24
  • (x3/52x1/5)23
  • (x3/5+2x1/5)22
If (1+2x+3x2)10=a0+a1x+a2x2++a20x20 then a1equals
  • 10
  • 20
  • 210
  • 420
The coefficient if x6 in the expansion of  (3x213x)9 is
  • 378
  • 756
  • 189
  • 567
If the second term in the expansion 13a+aa1n is 14a5/2, then the value of nC3/nC2 is
  • 4
  • 3
  • 12
  • 6
If the fourth term of (x(11+log10x)+12x)6 is equal to 200 and x > 1, then x is equal to 
  • 102
  • 10
  • 104
  • None of these
The sum of rational term in (2+33+65)10 is equal to 
  • 12632
  • 1260
  • 1236
  • none of these
The number of distinct terms in the expansion of (x+1x+x2+1x2)15 is/are ( with respect to different power of x )
  • 255
  • 61
  • 127
  • none of these
The general term in the expansion of (x+a)n
  • nCrxnr.ar
  • nCrxr.ar
  • nCnrxnr.ar
  • nCnrxr.anr
The 7th term in the expansion of (12+a)8 is :
  • 8C7(12)(a)7
  • 8C7(12)7.a
  • 8C6(12)2(a)6
  • 8C6(12)6(a)2
Find the middle term of the expansion of (3x+12x)7
  • 7C42516x2
  • 7C32716x
  • 7C42716x
  • 7C32716x
The sum of the coefficients of even powers of x in the expansion of
(1+x+x2+x3)5 is
  • 512
  • 256
  • 128
  • 64
The coefficient of x5 in the expansion of (1+x)21+(1+x)22+..+(1+x)30 is 
  • 51C5
  • 9C5
  • 31C621C6
  • 30C5+20C5
The coefficient of middle term in the expansion of (1+x)40 is
  • 1.3.53920!.220
  • 1.3.53920!
  • 4020!
  • 40! 2020
If S be the sum of the coefficients in the expansion of (ax+by+cz)n where a,b,c are lengths of the sides of a triangle, then lim is
  • 1
  • 0
  • e^{\left(\dfrac{ab}{c}\right)}
  • e^{\displaystyle \left(\frac{a+b+c}{a+b+c-1}\right)}
Match the elements of List I with List II

 List I List II
A) lf \lambda be the number of terms which are integers, in the expansion of
(5^{\frac16}+7^{\frac19})^{1824}, then \lambda is divisible by
P) 2
B) lf \lambda be the number of terms which are rational in the expansion of
(5^{\frac16}+2^{\frac18})^{100}, then 
\lambda is divisible by
Q) 3
C) lf \lambda be the number of terms which are irrational in the expansion of
(3^{\frac14}+4^{\frac13})^{99}, then 
\lambda is divisible by
R) 7
 S) 13 
 T) 17
The correct option which matches all the elements correctly, is :
  • (A) - P,Q,T (B) - P (C) - R,S
  • (A) - P,T (B) - Q (C) - S,T
  • (A) - P,S,T (B) - S,Q (C) - Q
  • (A) - P,S (B) - P,A (C) - P,R
Arrange the values of n in ascending order
A : If the term independent of x in the expansion of \left(\displaystyle \sqrt{x}-\frac{n}{x^{2}}\right)^{10} is 405
B : If the fourth term in the expansion of \left(\displaystyle \frac{1}{n}+n^{\log_{n}10}\right)^{5} is 1000( n< 10 )
C : In the  binomial expansion of (1+x)^{n} the coefficients of  5^{\mathrm{t}\mathrm{h}},\ 6^{\mathrm{t}\mathrm{h}} and 7^{\mathrm{t}\mathrm{h}} terms are in A.P.

  • A,B,C
  • B,A,C
  • A,C,B
  • C,A,B
The value of the expression \displaystyle \frac{C_1}{C_0}+2\frac{C_2}{C_1}+3\frac{C_3}{C_2}+\ldots\ldots\ldots +n\frac{C_n}{C_{n-1}} is
  • \dfrac{(n+1)(n+2)}{2}
  • \dfrac{n(n+1)}{2}
  • \dfrac{n(n-1)}{2}
  • \dfrac{n(n+2)}{2}
The coefficient of x^r[0 \le r \le n-1] in the expression of (x + 2)^{n-1} + (x+2)^{n-2} .(x+1) + (x+2)^{n-3}. (x+1)^2+...+(x+1)^{n-1} is
  • ^nC_r(2^r - 1)
  • ^nC_r(2^{n-r} - 1)
  • ^nC_r(2^r + 1)
  • ^nC_r(2^{n-r} + 1)
\cfrac { { C }_{ 0 } }{ x } -\cfrac { { C }_{ 1 } }{ x+1 } +\cfrac { { C }_{ 2 } }{ x+2 } -......+{ \left( -1 \right)  }^{ n }\cfrac { { C }_{ n } }{ x+n } =_______ where { C }_{ r } stands for { _{  }^{ n }{ C } }_{ r }.
  • \cfrac { n! }{ (x+1)...(x+n) }
  • \cfrac { n! }{ x(x+1)...(x+n-1) }
  • \cfrac { n! }{ x(x+1)...(x+n) }
  • \cfrac { n-1! }{ x(x+1)...(x+n) }
If { \left( 1+x \right)  }^{ n }={ C }_{ 0 }+{ C }_{ 1 }{x}+{ C }_{ 2 }{ x }^{ 2 }+\cdot \cdot \cdot \cdot \cdot +{ C }_{ n }{ x }^{ n }, then 
  • \cfrac { { C }_{ 1 } }{ { C }_{ 0 } } +2\cfrac { { C }_{ 2 } }{ { C }_{ 1 } } +3\cfrac { { C }_{ 3 } }{ { C }_{ 2 } } +\cdot \cdot \cdot \cdot +n\cfrac { { C }_{ n } }{ { C }_{ n-1 } } =\cfrac { n(n+1) }{ 2 }
  • { C }_{ n-1 } = n
  • \cfrac { { C }_{ 1 } }{ { C }_{ 0 } } +2\cfrac { { C }_{ 2 } }{ { C }_{ 1 } } +3\cfrac { { C }_{ 3 } }{ { C }_{ 2 } } +\cdot \cdot \cdot \cdot +n\cfrac { { C }_{ n } }{ { C }_{ n-1 } } =\cfrac { n(n-1) }{ 2 }
  • None of the above
If the (n+1) numbers a,b,c,d,... be all different and each of them a prime number, then the number of different factors (other than 1) of a^m.b.c.d.... is
  • m-2^n
  • (m+1)2^n
  • (m+1)2^n-1
  • None of these
Find the sum of the series
3.{ _{  }^{ n }{ C } }_{ 0 }-8.{ _{  }^{ n }{ C } }_{ 1 }+13._{  }^{ n }{ { C }_{ 2 } }-18.{ _{  }^{ n }{ { C }_{ 3 } } }+\ldots+(n+1)\quad terms
  • 0
  • -1
  • +1
  • None of these
if the coefficient of the middle term in the expansion of\displaystyle (1+x)^{2n+2}and p and the coefficients of middle terms in the expansion of\left ( 1+x \right )^{2n+1}are q and r,then
  • \displaystyle p+q=r
  • \displaystyle p+r=q
  • \displaystyle p=q+r
  • \displaystyle p+q+r=0
In the expansion of (5^{\tfrac 12} + 2^{\tfrac 18})^{1024}, the number of integral terms is
  • 128
  • 129
  • 130
  • 131
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers