Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 11 - MCQExams.com

The value of x in the expression (x+xlog10x)5, if the third term in the expansion is 10,00,000, is
  • 101
  • 101
  • 105/2
  • 105/2
The total number of terms which are dependent on the value of x in the expansion of (x22+1x2)n is equal to   
  • 2n+1
  • 2n
  • n
  • n+1
If c0,c1,c2cn are binomial coefficients in (1+x)n, then the value of c1+c5+c9+c13+ equals
  • 2n1+2n2sin(nπ4)
  • 2n1+2n2cos(nπ4)
  • 12(2n1+2n2sinnπ4)
  • 12(2n12n2sinnπ4)
The expresion
45C8+7k=152kC7+5i=157iC50i
  • 55C7
  • 57C8
  • 57C7
  • None of these
The coefficient of xn2 in the polynomial (x1)(x2)(x3)....(xn) is 
  • n(n2+2)(3n+1)24
  • n(n21)(3n+2)24
  • n(n2+1)(3n+4)24
  • None of these
The value of the expression 1+4.343+7.4+2.3.49+7.34316+26.31+25.33+26.33+24.34 equal
  • 1
  • 2
  • 4
  • 3
The value of B=0rsn (CrCs)2 is
  • (n+1)n22n
  • (n+1)2nCn2n
  • (n+1)2nCn22n
  • 22n2n
If C0,C1,C2....,Cn denote the binomial coefficients in the expansion of (1+x)n, then C1C0+2C2C1++3C3C2+.....+nCnCn1 equals
  • n2
  • n+12
  • n(n1)2
  • n(n+1)2
If the fourth term of (x(11+logx)+12x)6 is equal to 200 and x>1, then x is equal to
  • 102
  • 10
  • 104
  • 10/2
The number of irrational terms in the expansion of (85+62)100 is
  • 97
  • 98
  • 96
  • 99
The value of the expression
C20C21+C22......+(1)n×C2n is
  • 0, if n is odd
  • (1)n, if n is odd
  • (1)n/2 nCn/2, if n is even
  • (1)n1 nCn1, if n is even
Value of P=0r<snCrCs is
  • 22n12(2nCn)
  • 22n112(2nCn)
  • 22n12(2nCn)
  • None of these
11th term in the expansion of
(3174+32)20 is
  • an irrational number
  • a rational number
  • a positive integer
  • a negative integer
If n is even, then value of the expression
C012C21+13C22.....+(1)nn+1C2n
where
Cr=nCr is
  • (1)nn!(n+1)(n/2)!2
  • (1)n1n!(n+1)(n/2)!2
  • (1)(n+1)(n/2)!2
  • (1)n/2n!(n+1)(n/2)!2
Let
S=C1(1+12)C2+(1+12+13)C3........+.(1)n1(1+12+....+1n)Cn
then
  • nS=1
  • 1S is an integer
  • 1S2 is an integer
  • S is independent of n
values of x for which the sixth term of the expansion of
E=(3log39|x2|+7(15)log7[(4).3|x2|9])7 is 567, are
  • 1
  • 2
  • 3
  • none of these
Sum of the series
nk=0nkr=0(nk)(nkr) is
  • 2n
  • 3n
  • nr=0(1)rCr4r
  • nr=0nCr2r
If in the expansion of (x31x2)n,
nN, sum of coefficient of x5 and x10 is 0, then value of n is
  • 5
  • 10
  • 15
  • none of these
Value of
S=nCr+3(n1Cr)+5(n2Cr)+...+ upto (nr+1)terms
  • n+2Cr+2
  • n+2Cr+2+n+1Cr+2
  • n+2Cr+1
  • n+2Cr+2+n+1Cr
If Sn=1+q+q2+q3+...+qn and Sn=1+(q+12)+(q+12)2+...+(q+12)n,q1 then n+1C1+n+1C2.S1+n+1C3.S2+...+n+1Cn+1.Sn=
  • 2n1.Sn
  • 2n.Sn
  • 2n+1.Sn
  • None of these
The third term from the end in the expansion of (4x3y3y2x)9 is
  • 9C73523y5x5
  • 9C73523y5x5
  • 9C73523y5x3
  • none of these
If the second ,third and fourth terms in the expansion of (x+y)n are 240,720 and 1080 respectively, then the value of x,y,n is
  • x=2,y=3,n=5
  • x=3,y=3,n=5
  • x=2,y=3,n=3
  • x=2,y=2,n=5

Maximum sum of the coefficients in the expansion of (1xsinθ+x2)n is
  • 1
  • 2n
  • 3n
  • 0
C0+3.C1+3.2C2+...+3.nCn=5n.
  • True
  • False
(mC0+mC1mC2mC3)+(mC4+mC5mC6mC7)+...=0 if and only if for some positive integer k,m=
  • 4k
  • 4k+1
  • 4k1
  • 4k+2
In the expansion of (512+718)1024, the number of integral terms is
  • 128
  • 129
  • 130
  • 131
If the expansion of (x3+1x2)n contains a term independent of x, then the value of n can be
  • 18
  • 20
  • 24
  • 22
In the expansion of (3x25+53x2)10 mid term is
  • 291
  • 242
  • 252
  • 284
If (1+x)2n=a0+a1x....+a2nx2n, then
  • a1+a2+a4.....=12(a0+a1+a2.....)
  • an+1=an
  • an3=an+3
  • an3>an+3
If ac>b2 then the sum of the coefficients in the expansion of (aα2x2+2bαx+c)n,(a,b,c,αR,nN) is
  • Positive if a>0.
  • Positive if c>0.
  • Negative if a<0,n is odd.
  • Positive if c<0,n is even.
If the sum of the coefficients in the expansion of (l2x22lx+1)50 vanishes then l is equal to:
  • 1
  • 2
  • 1
  • 2
Find the value(s) of k such that the term independent of x in (3x2+k2x)6 is 135.
  • ±2
  • ±1
  • ±3
  • ±4
Find the coefficient of x4 in the expansion of (2x2+3x3)7
  • 7C22533
  • 7C22532
  • 7C23522
  • 7C32532
The sum of the series 11×225C0+12×323C1+13×425C2+......+126×2725C25
  • 227126×27
  • 2272826×27
  • 12(226+126×27)
  • 226152
The number of rational terms in the expansion of (x15+y110)45 is
  • 5
  • 6
  • 4
  • 7
The value of x in the expression (x+xlog10x)5, if the third term in the expansion is 1,000,000, is
  • 10,103/2
  • 100 or 103/2
  • 10 or 105/2
  • None of these
Sum of the last 30 coefficients in the expansion of (1+x)59, when expanded in ascending power of x is
  • 259
  • 258
  • 230
  • 229
If there is a term containing x2r in (x+1x2)n3, then
  • n - 2r is a positive integral multiple of 3.
  • n - 2r is even
  • n - 2r is odd
  • None of the above
The term independent of x in the expansion of [x3+32x2]10 is
  • 1
  • 10C1
  • 512
  • None of these
Coefficient of xn in the expansion of (1+x1!+x22!+...+xnn!)2 is?
  • 2nn!
  • 2n1n!
  • 2n+1n!
  • None of these
(1)r nCr1+rloge10(1+loge10n)r
  • 1
  • 1
  • n
  • none of these
If n1r=0(nCrnCr+nCr+1)3=45 then n=
  • 4
  • 6
  • 8
  • None of these
If (1+x)10=a0+a1x+a2x2+.....+a10x10, then value of (a0a2+a4a6+a8a10)2+(a1a3+a5a7+a9)2 is
  • 210
  • 2
  • 220
  • 230
If {x}  denotes the fraction part of x, then {3100182}=
  • 982
  • 8182
  • 382
  • 182
The coefficient of x160 in the expansion of (x8+1)60(x12+3x4+3x4+1x12)10 is
  • 30C6
  • 30C5
  • divisible by 189
  • divisible by 203
The value of 10r=1(sin2nr11icos2nr11) is
  • 0
  • 1
  • i
  • i
The co-efficient of x53 in the expression 100m=0100cm(x3)100m2m is
  • 100c53
  • 98c53
  • 65c53
  • 100c65
In the expression of (2x+14x)n ratio  of 2nd and third terms is given byt3/t2=7 and the sum of the co-efficients of 2nd and 3rd term is 36, then the value of x is 
  • 13
  • 12
  • 13
  • 12
The sum of the binomial coefficients in the expansion of (x3/4+ax5/4)n lies between 200 and 400 and the term independent of x equals 448. The value of a is
  • 1
  • 2
  • 1/2
  • for no value of a
The coefficient xn in the expression of (1+x)2n and (1+x)2n1 are in the ratio.
  • 1:2
  • 1:3
  • 3:1
  • 2:1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers