Explanation
There are total of n brackets. The term xn−2 will be formed when integers are chosen from any two brackets and x is chosen from all the other brackets and multiplied.
Thus, the Coefficient of xn−2 is
C=(1×2+1×3+...+1×n)+(2×3+2×4+..+2×n)+...+((n−1)×n)
=((n)(n+1)2−1)+2((n)(n+1)2−1−2)+...+(n−1)((n)(n+1)2−(1+2+3+..+(n−1)))
={(1+2+3+...+(n−1))((n)(n+1)2)}−{1+2(1+2)+3(1+2+3)+...+(n−1)(1+...+n−1)}
={((n−1)(n)2)((n)(n+1)2)}−{n−1∑1k((k)(k+1)2)}
={n2(n2−1)4}−{n−1∑1k3+k22}
={n2(n2−1)4}−12{((n−1)(n)2)2+(n−1)n(2n−1)6} =n(n−1)4{n(n+1)−n(n−1)2−2n−13}
=n(n−1)4{n(n+3)2−2n−13}
=n(n−1)4{3n2+9n−4n+26}
=n(n−1)4{(3n+2)(n+1)6} ∴ Option B is correct.
Put y=3log3√9|x−2| ⇒ log3y=log3√9|x−2| ⇒y=√9|x−2|=3|x−2| Now, put z=7(15)log7[(4).3|x−2|−9] log7z=15log7[(4).3|x−2|−9] =(log7[(4).3|x−2|−9])15 ⇒z=[(4).3|x−2|−9]15 Now, E=(y+z)7 and 6th term is given by t6=7C5y7−5z5=21(3|x−2|)2{(4).3|x−2|−9} ⇒567=21(32|x−2|){(4).3|x−2|−9} ⇒27=[(4)33|x−2|]−[(9)(32|x−2|)] ⇒27=(4)33|x−2|−(9)32|x−2| ⇒4u3−9u2−27=0;u=3|x−2| note that u=3 satisfies this equation 3|x−2|=3⇒|x−2|=1⇒x−2=±1 x=2±1=3or1.
(1+x)n=nC0+nC1x+nC2x2.........nCnxn⇒nC0+nC1+nC2.........nCn=2n
For the given expansion (1+x)59 let sum of last 30 coefficients be S
S=59C30+59C31+59C32..........59C59 ....(i)
As nCr=nCn−r
⇒S=59C29+59C28+59C27..........59C0 ....(ii)
Adding (i) and (ii), we get
⇒2S=59C0+59C1+59C2........59C59⇒2S=259⇒S=258
So, option B is correct.
Consider the given expression.
⇒(2x+14x)n
Given:
t3t2=7
By binomial expansion, we know that
t3=nC2(2x)n−2(14x)2
t2=nC1(2x)n−1(14x)1
Again, we have
nC1+nC2=36
n+1C2=36
(n+1)!2!(n+1−2)!=36
n(n+1)2=36
n2+n−72=0
n=8,−9
Therefore,
n=8
Now,
t3t2=nC2(2x)n−2(14x)2nC1(2x)n−1(14x)1
8C2(2x)8−2(14x)28C1(2x)8−1(14x)1=7
28(2x)6(1(22)x)28(2x)7(1(22)x)1=7
7×26x−4x2×27x−2x=7
22x−5x=2
−3x=1
x=−13
Hence, this is the required result.
Please disable the adBlock and continue. Thank you.