Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 12 - MCQExams.com

If Cr=(100Cr),thenE=n+4r=0(1)rcrcr+1
  • (100C45)
  • (100C47)
  • (101C50)
  • (100C51)
If the rth term in the expansion of (x32x2)10 contains x4 then r is equal to
  • 2
  • 1
  • 3
  • 5
If C0,C1,C2,...,Cn are the binomial coefficients and n  is odd, then
2C1+23.C5+...+2n nCn equals
  • 3n+(1)n2
  • 3n(1)n2
  • 3n+12
  • 3n12
 Assertion (A): The expansion of (1+x)n=C0+C1x+C2x2++Cnxn Reason (R): If x=1, then the above expansion is  zero 
  •  Both A and R are true and R is the correct  explanation of A
  •  Both A and R are true and R is not the  correct explanation of A
  • A is true, but R is false
  • A is false, but R is true
If the ratio T2:T3 in the expansion of (a+b)n and T3:T4 in the expansion of  (a+b)n+3 are equal , then n =
  • 3
  • 4
  • 5
  • 6
The coefficient  of x5 in the expansion of (1+x2)5(1x)4 is 
  • 4.6C4
  • 2.6C4
  • 2.6C2
  • 4.6C2
In the binomial expansion of (ab)nn>0 and the sum 5th and 6 th  terms is zero, then ab equal to 
  • 5n4
  • 6n5
  • n56
  • n45
The co-efficient of x in the expansion of (12x3+3x5)(1+1x)8 is 
  • 56
  • 65
  • 154
  • 62
If the sum of odd terms and the sum of even terms in (x+a)n are p and q respectively then p2+q2=
  • (x+a)2n(xa)2n2
  • (x+a)2n(xa)2n
  • (x+a)2n+(xa)2n2
  • (x+a)2n+(xa)2n
The sum of the series
2(n2)!(n2)!(n!)[C202C21+3C22...+(1)n(n+1)C2n]
where n is an even positive integer, is equal to
  • 0
  • (1)n2(n+1)
  • (1)n2(n+2)
  • (1)nn
Integral part of (8+37)n is 
  • an even number
  • an odd number
  • an even or odd number depending upon the value of n
  • nothing can be said
If A and b are coefficients of (1+x)2 and (1+x)2n1 respectively, then
  • d=B
  • A=2B
  • 2A=B
  • A+B=0
The total number of terms in the expansion of (x+a)200+(xa)200 after simplification is
  • 101
  • 102
  • 201
  • 202
The sum of the co-efficients of all odd degree terms in the expansion of (x+x31)5+(xx31)5
(x>1) is:
  • 2
  • 1
  • 0
  • 1
Sum of the coefficient of integral powers of x in (12x)50 is 
  • 350+12
  • 3502
  • 2491
  • 249+1
Find the middle terms(s) in the expansion of (3x2x2)15.
  • 6435×37×27x6,6437×37×28x9
  • 6435×38×27x6,6437×37×28x9
  • 6435×38×27x6,6437×37×27x9
  • 6435×38×27x6,6437×38×28x9
Sum of coefficients of x2r, r=1,2,3,....... in (1+x)n is
  • (2n11)
  • (2n1+1)
  • (2n2+1)
  • (2n21)
The sum of coefficients of integral powers of x in the binomial expansion of (12x)50 is
  • 12(3501)
  • 12(250+1)
  • 12(350+1)
  • 12(350)
Coefficient of xn in expansion of (1+2x)2(1x)3 is
  • 2n
  • 32(3n2+n)
  • n2+n1
  • None of these
Coefficient of xr in the expansion of (12x)1/2 is
  • (2r)!(r!)2
  • (2r)!2r(r!)2
  • (2r)!(r!)22r
  • (2r)!2r(r+1)!(r+1)
The coefficient of x99 in (x+1)(x+3)(x+5).....(x+199) is
  • 1+2+3+...+99
  • 1+3+5+...+199
  • 1.3.5............199
  • None of these
The sum of coefficient of integral powers of x in the binomial expansions (12x)50 is:
  • 12(3501)
  • 12(250+1)
  • 12(350+1)
  • 12(350)
The middle term in the expansion of (3xx36)9 is 
  • 2116x19
  • 2116x19
  • 2116x19
  • 2116x19
The sum of the co-efficient of all odd degree terms in the expansion of (x+x31)5+(xx31) 
  • 0
  • 1
  • 2
  • 1
Sum of the series )100C1)2+2(100C2)2+3(100C3)2+.......+100(100C100)2 equals
  • 299[1.3.5......(199)]99!
  • 100.200C100
  • 50.200C100
  • 100.199C99
The sum of the series 2020C02020C1+2020C22020C3+.....+2020C1010 is 
  • 122020C1010
  • 2020C1010
  • Zero
  • 122020C1010
The value of 112!+110!2!+18!4!+...+112!
  • 21212!
  • 21112!
  • 21111!
  • None of these
If (1+x+2x2)20=0+a1x+a2x2+......+a40x40 then a1+a3+a5+......+a37 equals -
  • 219(22021)
  • 220(21919)
  • 219(220+21)
  • None of these
The greatest terms of the expansion (2x+5y)13 when x=10, y=2 is?
  • 13C5208105
  • 13C6207104
  • 13C4209104
  • None of these
The coefficient of x9 in (x - 1) (x - 4) (x - 9)........(x - 100) is
  • -235
  • 235
  • 385
  • None of these
Find the value of 1(n1)!+1(n3)!3!+1(n5)!5!+...
  • 2n1(n1)!
  • 2nn!
  • 2n1n!
  • None of these
The constant term in the expansion of (1+x)n(1+1x)n is 
  • C20+2C21+3C22+......+(n+1)C2n
  • (C0+C1+.....+Cn)2
  • C20+C21+.....+C2n
  • None of these
The largest coefficient in the expansion of (4+3x)25 is 
  • 25C11325(43)14
  • 25C11425(34)11
  • 25C14414311
  • 25C14411.314
The sum of the co-efficient of all odd degree terms in the expansion of (x+x31)5+(xx31)5,(x>1) is : 
  • 1
  • 1
  • 0
  • 2
If the last term in the binomial expansion of (21/312)n is (135/3)log38, then the 5th terms form the beginning is:
  • 210
  • 420
  • 103
  • None of these
Coefficient of x25 in (1+x+x2+x3+....+x10)7 is
  • 31C157.20C14
  • 31C147.20C14
  • 31
  • None of these
The coefficient of x8 in (1+2x2x3)9 is 
  • 1680
  • 2140
  • 2520
  • 2730
The coefficients of x10 in the expansion of (1+x)15+(1+x)16+(1+x)17+....+(1+x)30 is 
  • 31C1015C10
  • 31C1115C11
  • 30C1015C10
  • 31C1014C11
The sum of the coefficient in the expansion of (a+2b+c)11 is-
  • 411
  • 32
  • 31
  • None of these
State true or false.
The general term for 3,7,13,21,31,43........ is n2(n1),n=1,2,3,...
  • True
  • False
The coefficient of x3 in the expansion of (1+2x+3x2)10 is
  • Less than 200
  • Less than 400 but greater than 200
  • 1400
  • 1500
The coefficient of xn in the expansion of 1(1x)(12x)(13x) is
  • 12(2n+23n+3+1)
  • 12(2n+22n+3+1)
  • 12(2n+23n+2+1)
  • None of these
The number of rational terms in the expansion of (1+2+33)6 is
  • 6
  • 7
  • 5
  • 8
The coefficient of x4 in the expansion of (1+x+x2+x3)11 is 
  • 990
  • 495
  • 330
  • none of these
The coefficient of x24 in the expansion of 
(1 +3x + 6x2 + 10x3+ -----------+)2/3 =
  • 300
  • 250
  • 25
  • 205
The co-efficient of xk in expansion of 1+(1+x)+(1+x)2++(1+x)n is : (n>k)
  • nCk
  • n+1Ck
  • n+1Ck+1
  • None of these
The number of terms in the expansion of [a3+1a3+1]100 is
  • 201
  • 300
  • 200
  • 100C3
For xR,x1 if (1+x)2016+x(1+x)2015+x(1+x)2014+.+x2016=2016i=0aixi, then  a17 is equal to 
  • 2017!17!2000!
  • 2016!17!1999!
  • 2017!2000!
  • 2016!16!
The middle term in the expansion of (11x)n(1x)n is
  • 2nCn
  • 2nCn
  • 2nCn1
  • none of these
If the middle term in the expansion of (1+x)2n is the greatest term, then x lies in the interval ___________________.
  • (nn+1,n+1n)
  • (n+1n,nn+1)
  • (n2,n)
  • (n1,n)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers