Loading [MathJax]/jax/element/mml/optable/MiscTechnical.js

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 2 - MCQExams.com


The coefficient of 1x in the expansion of (1+x)n(1+1x)n is :
  • n!(n1)!(n+1)!
  • 2n!(n1)!(n+1)!
  • n!(2n1)!(2n+1)!
  • 2n!(2n1)!(2n+1)!
Coefficient of x in the expansion of (12x3+3x5)(1+1x)8 is
  • 154
  • 164
  • 146
  • 156
If a is the coefficient of the middle term in the expansion of (1+x)2n and b,c are the coefficients of the two middle terms in the expansion of (1+x)2n1 then 
  • a+b=c
  • a=b+c
  • a=b=c
  • b=a+c
The middle term in the expansion of (13x+3x2x3)2n is
  • 6nC3n(x)3n
  • 6nC2n(x)2n+1
  • 4nC3n(x)3n
  • 6nC3n(x)3n1
Sum of the coefficients in the expansion of (5x4y)n where n is a positive integer is
  • 1
  • 9n
  • (1)n
  • 5n
If n is a positive integer, then the coefficient of xn in the expansion of (1+2x)n1x is
  • n.3n
  • (n1)3n
  • (n+1)3n
  • 3n
The coefficient of xp the expansion of (x2+1x)n, when it exists is
  • 2nC4n+p3
  • 2nC2n+p3
  • 2nCn+p3
  • nCn+p3
If n is a positive integer, then the coefficient of xn in the expansion of (1+x)n1x is

  • (n+1)2n
  • 2n
  • 2n1
  • n.2n
The coefficient of the middle term in the binomial expansion in powers of x of (1+αx)4 and of (1αx)6 is same if α=
  • -5/3
  • 3/5
  • -3/10
  • 10/3
The sum of the coefficients in the expansion of (1x)10

  • 0
  • 1
  • 1
  • 210
In the expansion of (1+x)n, the 5th term is 4 times the 4th term and the 4th term is 6 times the 3rd term. than n=
  • 9
  • 10
  • 11
  • 12
Assertion (A) : The coefficient of x7 in (x222x)9 is zero

Reason (R) : r in 
tr+1 that contains coefficient of x7 is not positive integer


  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true, but R is false
  • A is false, but R is true
lf the 5th term of (q2xpx)8 is 1120 and p+q=5, p>q then p=
  • 3
  • 6
  • 4
  • 7
lf (1+kx)10=a0+a1x+a2x2+.+a10x10 and a2+75a1+1=0 then k=
  • -1/5, -1/9
  • 1/5, 1/9
  • -1/5, -1/7
  • 1/5, -1/9

(n+1)C1+(n+1)C2+(n+1)C3+..+(n+1)Cn=
  • 2(2n+1)
  • 2(2n1)
  • 2n+1
  • (2n+11)
The ratio of (r+1)th and (r1)th terms in the expansion of (ab)n is
  • (nr+2)(nr+1)r(r1)b2a2
  • (nr+2)(nr+1)r(r1).a2b2
  • (nr+2r)ba
  • (nr+1r1)ba
If the 2nd,3rd and 4th terms in the expansion of (a+b)n are 135,30 and 103 respectively, then the value of n is:
  • 5
  • 6
  • 7
  • 8
Assertion (A) : The coefficient of x2 in the expansion of (x2+1x)5 is equal to 5C4
Reason (R) : The value of r for the above expansion is 3.
  • Both A and R are true and R is the correct explanation of A
  • Both A and R are true and R is not the correct explanation of A
  • A is true, but R is false
  • A is false, but R is true
If the term containing x3 in (1xn)n is 78 when x=2 and n is a positive integer, then n=
  • 7
  • 8
  • 9
  • 10
In the expansion of [2log29x1+7+1215log2(3x1+1)]7, 6th term is 84. Then x=
  • 1
  • 2
  • 1 or 2
  • 2 or 4

nr=0(r4)Cr=
  • (n8)2n
  • (n8)2n1
  • (n8)2n4
  • 0

The sum of the coefficients of middle terms in the expansion of (1+x)2n1
  • (2n)!
  • (2n)!n!
  • (2n)!(n!)2
  • (2n1)!n!
(2n+1)C0(2n+1)C1+(2n+1)C2....2n+1C2n=
  • 1
  • 22n
  • 1
  • 0

The number of irrational terms in the expansion (43+37)36 is
  • 30
  • 33
  • 31
  • 29

nr=0r.C2r=
  • n2(2n)!(n!)2
  • (2n)!(n!)2
  • (2n)!
  • n(2n)!2
The sum of the coefficients of the first 10 terms in the expansion of (1x)3
  • 220
  • 286
  • 120
  • 150
nr=25r3Cr=
  • (5n+6).2n12n+2
  • (5n+6).2n12n+3
  • (5n6)2n12n+2
  • (5n6)2n12n+3

S1=mc1+(m+1)C2+(m+2)C3+.+(m+n1)Cn

S2=nc1+(n+1)C2+(n+2)C3+.+(m+n1)Cn

  • S1+S2=0
  • S1S2=0
  • S1+S2=2n
  • S1+S2=2n1

If C0+2C1+4C2+.+2nCn=243, then n =
  • 3
  • 4
  • 5
  • 6

The sum
  • 2^{10}
  • 2^{10}-1
  • 3^{10}-1
  • 3^{10}
The number of non zero terms in the expansion of (1+3\sqrt{2}x)^{9}+(1-3\sqrt{2}x)^{9} is
  • 9
  • 0
  • 5
  • 10
If x + y = 1, then \displaystyle \sum_{r=0}^{n}r^{n}C_{r}x^{r}.y^{n-r}=
  • 1
  • n
  • nx
  • ny
If x + y = 1 then \displaystyle \sum_{r=0}^{n}r^{2}  ^{n}C_{r}x^{r}y^{n-r}
  • nxy
  • nx(x + yn)
  • nx(nx + y)
  • nx

The number of non zero terms in (x+\mathrm{a})^{75}+(x-\mathrm{a})^{75}
  • 38
  • 76
  • 34
  • 32
If the fourth term in the expansion of 

\left(\sqrt{x^\dfrac{1}{\log x+1}}+x^\dfrac{1}{12}\right)^{6} is equal to 200 and x>1, then x is
  • 10
  • 10^{-4}
  • 1
  • -4
If in the expansion of (\displaystyle \frac{1}{x}+x\tan x)^{5}, the ratio of 4^{th} term to the 2^{nd} term is \displaystyle \frac{2}{27}\pi^{4}, then the value of {x} can be
  • \displaystyle \frac{-\pi}{6}
  • \displaystyle \frac{-\pi}{3}
  • \displaystyle \frac{\pi}{3}
  • \displaystyle \frac{\pi}{12}
In the expansion of (1+x)^{n}.(1+y)^{n}.(1+\mathrm{z})^{n} the sum of the coefficients of the terms of degree r is
  • (^{n}C_{r})^{3}
  • ^{3n}C_{r}
  • 3\times nC_{r}
  • nC_{3r}
The number of terms in the expansion of \left [ (a+4b)^{3}(a-4b)^{3} \right ]^{2} are
  • 6
  • 7
  • 8
  • 32
The number of terms in the expansion of \left [ (a+4b)^{3}+(a-4b)^{3} \right ]^{2} are
  • 6
  • 8
  • 7
  • 3
The sum of the coefficients of the middle terms of (1+{x})^{2{n}-1} is
  • ^{2n-1}C_{n}
  • ^{2n-1}C_{n+1}
  • ^{2n}C_{n-1}
  • ^{2n}C_{n}
The coefficient of x^4 in \displaystyle \left ( \frac{x}{2} - \frac{3}{x^2} \right )^{10} is
  • \displaystyle \frac{45}{64}
  • \displaystyle \frac{243}{128}
  • \displaystyle \frac{405}{256}
  • \displaystyle \frac{810}{512}
If the coefficients of r^{th} term and (r+1)^{th} term in the expansion of (1+x)^{20} are in the ration 1 : 2, then r=
  • 6
  • 7
  • 8
  • 9
The coefficient of the 8th term in the expansion of (1+x)^{10} is
  • 120
  • 7
  • ^{10}C_8
  • 210
If T_r denotes the rth term in the expansion of \displaystyle \left ( x+\frac{1}{y} \right)^{23} then
  • T_{12}=T_{13}
  • x^2T_{13}=T_{12}
  • T_{12} = xy T_{13}
  • T_{12} + T_{12} = 25
The coefficient of x^3 in \displaystyle \left ( \sqrt{x^5}+ \frac{3}{\sqrt{x^3}} \right )^5 is
  • 0
  • 120
  • 420
  • 540
The coefficient of the middle term in the expansion of (1+x)^{2n} is
  • ^{2n}C_{n}
  • \displaystyle \frac{1.3.5\ldots..(2n-1)}{n!}2^{n}
  • 2.6\ldots(4n-2)
  • 2.4\ldots\ldots\ldots 2n

Assertion (A) : Number of the disimilar terms in the sum of expansion (x+a)^{102}+(x-a)^{102} is 206

Reason (R) : Number of terms in the expansion of (x+b)^{n} is n + 1



  • Both A and R are individually true and R is the correct explanation of A.
  • Both A and R are individually true and R is not correct explanation of A.
  • A is true but R is false
  • A is false but R is true
In the binomial expansion of (a-b)^n, n \geq 5, the sum of 5^{th} and 6^{th} terms is zero, then \dfrac ab equals
  • \displaystyle \frac{5}{n-4}
  • \displaystyle \frac{6}{n-5}
  • \displaystyle \frac{n-5}{6}
  • \displaystyle \frac{n-4}{5}
The total number of rational terms in the expansion of \left(7^{\frac 13} + 11^{\frac 19}\right)^{6561} is

  • 731
  • 729
  • 728
  • 730
  • 732
If the coefficient of x^7 in \displaystyle \left [ ax^2 + \left ( \dfrac{1}{bx} \right ) \right ]^{11} equals the coefficient of x^{-7} in \displaystyle \left [ ax - \left ( \dfrac{1}{bx^2} \right ) \right ]^{11}, then a and b satisfy the relation
  • a-b=1
  • a+b=1
  • \dfrac{a}{b}=1
  • ab=1
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers