Explanation
Given (1+x)n=C0+C1x+C2x2+⋯+Cnxn ∴x2(1+x)n=x2C0+C1x3+C2x4+⋯+Cnxn+2(∗) Now substituting x=1,ω,ω2in(∗), we get 2n=C0+C1+C2+C3+⋯+Cn⋯(1) ω2(1+ω)n=C0ω2+C1ω3+C2ω4+⋯+Cn.ωn+2...(2) ω4(1+ω2)n=C0ω4+C1ω6+C2ω8+⋯+Cn.ω2n+4...(3) Now adding (1), (2) and (3) we get 2n+ω,2(1+ω)n+ω4(1+ω2)n =C0(1+ω+ω2)+C1(1+ω3+ω6)+C2(1+ω+ω2) +....=3(C1+C4+C7+⋯) (other terms vanished).3(C1+C4+C7+⋯) =2n+ω2(cosnπ2+isinnπ3)+ω4(cosnπ3−isinnπ3) =2n+(ω2+ω)cosnπ3+i(ω2−ω)sinnπ3 =2n−cosnπ3+i(−√3i)sinnπ3 As ω=−1+i√32andω2=−1−i√32 ω2−ω=−12−i√32+12−i√32=i√3 ω2−ω=−√3 ∴3(C1+C4+C7⋯)=2n−cosnπ3+√3sinnπ3 C1+C4+C7+⋯=13(2n−cosnπ3+√3sinnπ3)
nCr+1+nCr =n+1Cr+1 Hence simplifying the terms, we get n+1C1.n+1C2....n+1Cn Now n+1C1 =(n+1)!n!.1! =(n+1)nnC1 Similarly n+1C2 =(n+1)!(n−1)!.2! =(n+1)(n−1)nC2 Hence substituting, in the above expression, we get (n+1)nn!(nC0.nC1...nCn) Comparing coefficients, we get K=(n+1)nn!
Please disable the adBlock and continue. Thank you.