Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 4 - MCQExams.com

Determine the value of x in the expression (x+xt)5, if the third term in the expression is 10,00,000 where t=log10x.
  • 10
  • 105/2
  • Both (A)and (B)
  • None of these
The number of terms whose values depends on x in the expansion of (x22+1x2)n is
  • 2n+1
  • 2n
  • n
  • none of these
In the expansion of the expression (x+a)15, if the eleventh term in the geometric mean of the eighth and twelfth terms, which term in the expression is the greatest?
  • T6
  • T7
  • T8
  • T9
The value of 1(n1)!+1(n3)!3!+1(n5)!5!+....
  • 2n+1n!
  • 2n1n!
  • 2n1n+1!
  • 2n+1n1!
If (1+x)n=C0+C1x+C2x2+..........+CnxR, then the sum
C0+(C0+C1)+(C0+C1+C2)+.....+(C0+C1+C2+.....+Cn1 is

  • n.2n+1
  • n.2n1
  • (n1).2n1
  • (n+1).2n+1
If n is a positive integer and Ck=nCk, find the value of nk=1k3(CkCk1)2
  • n(n1)2(n+2)12
  • n(n+1)2(n2)12
  • n(n+1)2(n+2)12
  • n(n1)2(n2)12
The sum of coefficients of x2r,r=1,2,3,..., in the expansion of (1+x)n is
  • 2n
  • 2n11
  • 2n1
  • 2n1+1
The number of terms with integral coefficients in the expansion of(71/3+51/2.x)600 is
  • 100
  • 50
  • 101
  • none of these
The sum of coefficients in the binomial expansion of (1x+2x)nis equal to 6561.The constant term in the expansion is
  • 8C4
  • 168C4
  • 6C424
  • none of these
If the 4th term in the expansion is of (px+x1)m is 2.5 for all xϵR then
  • p=52,m=3
  • p=12,m=6
  • p=12,m=6
  • none of these
The sum 10C3+11C3+12C3+..........+20C3 is equal to
  • 21C4
  • 21C4+ 10C4
  • 21C17 10C6
  • none of these
The sum of coefficients of all the integral powers of  x in the expansion of (1+2x)40 is
  • 340+1
  • 3401
  • 12 (3401)
  • 12 (340+1)
The absolute value of middle term in the expansion of (11x)n.(1x)n is
  • 2nCn
  •  2nCn
  •  2nCn1
  • none of these
The sum of last ten coeffficients in the expansion of (1+x)19 when expanded in ascending powers of x is
  • 218
  • 219
  • 21819C10
  • none of these
The middle term in the expansion of (2x332x2)2n is
  • 2nCn
  • (1)n[(2n!)/(n!)2].xn
  • 2nCn.1xn
  • none of these
The sum 20C0+20C1+20C2+20C10 is equal to
  • 220+20!(10!)2
  • 2191(2)20!(10!)2
  • 219+ 20C10
  • none of these
The number of non-zero terms in the expansion of (1+32x)9+(132x)9 is
  • 9
  • 0
  • 5
  • 10
The value of nj=1(n+1CjnCj)is equal to
  • 2n
  • 2n+1
  • 32n
  • 2n1
The sum 12 10C0 10C1+ 210C2 2210C3+...+2910C10 is equal to
  • 12
  • 0
  • 12310
  • none of these
The number of integral terms in the expansion of (3+55)256 is
  • 25
  • 26
  • 24
  • None of these
If (1+x)2n=a0+a1x+a2x2+...+a2nx2n then
  • an+1> an
  • an+1< an
  • an3=an+3
  • none of these
  • Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
  • Statement-1 is True, Statement-2 is True; Statement-2 is Not a correct explanation for Statement-1
  • Statement-1 is True, Statement-2 is False
  • Statement-1 is False, Statement-2 is True
Let nϵN.If (1+x)n=a0x+a1x+a2x2+...+anxn, and an3,an2,an1, are in AP then
  • a1,a2,a3 are in AP
  • a1,a2,a3 are in HP
  • n=7
  • n=14
In the expansion of (34+146)20,
  • the number of rational terms =4
  • the number of irrational terms =19
  • the middle term is irrational
  • the number of irrational terms =17
The sum of the series 10r=020Cr is
  • 21912.20C10
  • 219+12.20C10
  • 219
  • 220
n+1C2+2[2C2+3C2+4C2+...+nC2]=
  • n(n+1)(2n+1)6
  • n(n+1)2
  • n(n1)(2n1)6
  • None of these
If C0,C1,C2,....Cn are binomial coefficient in the expansion of (1+x)n, then value of  C1+C4+C7+... equals
  • 13(2n+3sinnπ3)
  • 13(2ncosnπ3+3sinnπ3)
  • 13(2n3sinnπ3)
  • 13(2ncosnπ33sinnπ3)
If the third term in the expansion of (1x+xlog10x)5 is 1,000, then x-equals
  • 102
  • 103
  • 10
  • None of these
If C0,C1,C2,.....Cn, are binomial coefficients,then nk=0Cksinkxcos(nk)x equals

  • 2nsinnx
  • 2n+1sin(n+1)x
  • 2n1sinnx
  • 2n+1sinnx
If coefficient of x100 in 1+(1+x)(1+x)2+.....+(1+x)n(ifn100) is C201101 then the value of n equals

  • 202
  • 100
  • 200
  • 201
If (1+x+x2)n=2nr=0arxr=a0+a1x+a2x2+...+a2nx2n and
P=a0+a3+a6+...
Q=a1+a4+a7+...
R=a2+a5+a8+...
then the set of values of P,Q,R are respectively equals
  • (1,1,1)
  • (3n,3n,3n)
  • (3n+1,3n+1,3n+1)
  • (3n1,3n1,3n1)
The evaluated value of ni=0nj=1 nCj jCi, ij
  • 3n+1
  • 3n1
  • 3n+1+1
  • None of these
If Cr=nCr and (C0+C1)(C1+C2)...(Cn1+Cn)=k (C0C1C2...Cn) then the value of k equals
  • (n+1)n+1n!
  • (n+1)nn.n!
  • (n)nn!
  • (n+1)nn!
If P be the sum of odd term and  Q that of even terms in the expansion of  (x+a)n , then the value of  [(x+a)2n(xa)2n] equals
  • PQ
  • 2PQ
  • 4PQ
  • None of these
The sum of the coefficients of all odd exponets of x in the product of (1x+x2x3+x4+...x49+x50)×(1+x+x2+x3+...+x50) equals
  • 1
  • 0
  • 1
  • None of these
If C0,C1,C2....,Cn are Binomial Coefficients, such that Sn=nr=01Crn and tn=nr=0rCrn then tnsn equals

  • n2
  • n(n+1)2
  • n+12
  • None of these
If(1+x)n=nr=0Crxr, then the value of C0C2+C4C6+C8C10+... equals
  • 2n2cosnx4
  • C1C3+C5C7+....
  • C0+C4+C8+C12+....
  • 2n2sinnx4
If (1+x)n=nr=0Crxr then the value of 3C1+7C2+11C3+....+(4n1)Cn is
  • (4n1)2n
  • (2n1)2n
  • (2n1)2n+1
  • (4n1)2n1
If Cr13 denoted by Cr then value of c1+c5+c7+c9+c11 is equal to
  • 212287
  • 212165
  • 212C3
  • 212C2C13
The Coefficient of x53 in 100m=0Cm100(x3)100m2m is
  • =100C53
  • =101C53
  • =101C47
  • =100C47
The number of terms with integral coefficient in the expansion of (1713+3512)300 is
  • 50
  • 100
  • 150
  • 51
If A is the sum of the odd terms and B the sum of even terms in the expansion of (x+a)n, then A2B2=
  • (x2+a2)n
  • (x2a2)n
  • 2(x2a2)n
  • None of these
The sum of the series nr=0(n+1Cr) equals
  • (n+1)22n1
  • 122n!n!n!
  • 22n1(n+1)122n!n!n!
  • 2n+11
If x+y=1 then nr=0rnCrxrynr equals
  • 1
  • n
  • nx
  • ny
Number of rational term is the expansion of (71/3+111/9)729
  • 81
  • 82
  • 730
  • None of these
The values of x in the expansion (x+xlog10x)5 , if the third term in the expansion is 10,00,000
  • 10
  • 102
  • 103
  • None of these
If (1+x)n=nr=0Crxr and 0i<jnCi×Cj represent the products of the Ci's taken two at a time, then its value equals
  • 22n1(2n)!(n!)2
  • 22n1+2n!n!n!
  • 22n12n!2n!n!
  • None of these
Sum of the coefficients of the terms of degree m in the expansion of
(1+x)n(1+y)n(1+z)n is
  • (nCm)3
  • 3(nCm)
  • nC3m
  • 3nCm
The number of irrational terms in the expansion of (516+218)100 is

  • 96
  • 97
  • 98
  • 99
Value of the expression C20+C21+C22+.....+(n+1)C2n is
  • (2n+1)(2nCn)
  • (2n1)(2nCn)
  • (n2+1)(2nCn)
  • (n2+1)(2n1Cn)
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers