Loading [MathJax]/extensions/TeX/boldsymbol.js

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 5 - MCQExams.com

In the expansion of (2+53)120 the number of irrational terms is
  • 12
  • 13
  • 108
  • 54
If the fourth term in the expansion of (1xlogx+1+x1/12)6 is equal to 200 and x>1, then x is equal to
  • 102
  • 10
  • 104
  • None of these
If A and B are coefficients of xn in the expansions of (1+x)2n and (1+x)2n1 respectively, then AB is equal to
  • 1
  • 2
  • 12
  • 1n
The expression C0+2C1+3C2+......+(n+1)Cn is equal to
  • 2n1
  • n(2n1)
  • n(2n1)+2n
  • (n+1)2n
If f(n)=nk=1nj=k(nCj)(jCk), find f(n).
  • 3n2n
  • 3n+2n
  • 3n12n1
  • 3n+12n+1
If the third term in the expansion (x+xlog5x)5 is 2, then x equals
  • 1/5,5
  • 1/5,1/5
  • 5,5
  • 1/5,5
If Cr=(nr), then sum of series C201+C212+C223+.... upto (n+1) terms is
  • 1n+1(2n+1n+1)
  • 12(n+1)(2n+1n+1)
  • 1n+1(2n+1n)
  • (2n+1)!(n+1)!2
Value of S=1×2×3×4+2×3×4×5+.......+n(n1)(n+2)(n+3) is
  • 15n(n+1)(n+2)(n+3)(n+4)
  • 15!(n+3C5)
  • 15n+4C4
  • None of these
Given that the 4th term in the expansion of (2+3x8)10 has the maximum numerical value, then x can lie in the interval(s)
  • (2,6421)
  • (6023,2)
  • (6421,2)
  • (2,6023)
If the third term in the expansion of
(1x+xlog2x)5 is 40 then x equals
  • 12,2
  • 2,4
  • 12,4
  • 2,12
If in the expansion of (1x+xtanx)5 the ratio to 4th term to the 2nd term is 227π4, then the value of x can be
  • π6
  • π3
  • π3
  • π12
If the coefficients of 2nd, 3rd and the 4th terms in the expansion of (1+x)n are in A.P, then value of n is
  • 5
  • 7
  • 11
  • 14
If the middle term of (x+1xsin1x)8 is equal to 63016, then value of x is (are)
  • π3
  • π6
  • π6
  • π3
Let Sn=nr=0(2)r(nCrr+2Cr), then
  • Sn=1n+1 if n is odd
  • Sn=1n+2 if n is odd
  • Sn=1n+1 if n is even
  • Sn=1n+2 if n is even
Let Cr stand for nCr and S(n,r)=C0C1+C2C3+....+(1)rCr
  • If S(n,r)=28 then n=9,r=2 or n=9,r=6
  • If S(n,r)=15, then n=7,r=3
  • S(n,n)=0
  • none of these
Value of
k=1kr=013k(kCr) is
  • 2
  • 23
  • 13
  • none of these
Value of 0r<sn(r+s)(Cr+Cs)2 is
  • n[(n1)(2nCn)+22n]
  • n[(n+1)(2nCn)+22n]
  • n[22nn(2nCn)]
  • None of these
If A=2nC0.2nC1+2nC12n1C1+2nC22n2C1+... then A is
  • 0
  • n.22n
  • 2102
  • 1
The coefficient of x9 in the expansion of (x3+12t)11, where t=log2(x32),
  • 5
  • 330
  • 520
  • 5+log2(3)
Value of 0i<jn(Ci+Cj)2 is
  • 22n(n+1)(2nCn)
  • 22n+(n+1)(2nCn)
  • 22n1+(n+1)(2nCn)
  • none of these
If x2r occurs in (x+2x2)n, then n2r must be of the form
  • 3k
  • 3k1
  • 3k+1
  • 4k±1
Value(s) of x for which the fourth term in the expansion of
(x1/(log2x+1)+x1/2)6 is 40 is (are)
  • 1/8
  • 2
  • 1/16,2
  • 1/8,4
If the middle term of (x+1xsin1x)8 is 35π48, then value of x can be
  • 12
  • 32
  • 12
  • 1
The number of irrational terms in the expansion of (41/5+71/10)45 is
  • 40
  • 5
  • 41
  • none of these
If the expansion of (1+x)50, the sum of coefficients of add powers of x is
  • 250
  • 249
  • 0
  • None of these
The coefficients of three consecutive terms in the expansion of (1+x)n are in the ratio 5:10:21. find n
  • 5
  • 4
  • 7
  • 8
The coefficient of x99 in the polynomial (x1)(x2)(x3)...(x100) is
  • 1
  • 5050
  • 5050
  • 1
Value of the expression
C0+(C0+C1)+(C0+C1+C2)+....+(C0+C1+....+Cn1) is
  • 2n1
  • n2n2
  • n2n1
  • 2n
If Sn=1n+1ni=0(ni), then 2Sn+1Sn equals


  • =2n[3n2(n+1)(n+2)]
  • =2n[3n+2(n+1)(n+2)]
  • =2n[3n+2(n1)(n+2)]
  • 0
In the expansion of (x3+3.2log2x3)11
  • there appears a term with the power x2
  • there does not appear a term with the power x2
  • there appear a term with the power x3
  • the ratio of the co-efficient of x3 to that of x3 is 13
If (1+x+x2)25=a0+a1x+a2x2++a50x50 then a0+a2+a4++a50 is
  • even
  • odd & of the form 3n.
  • odd & of the form (3n1)
  • Odd & of the form (3n+1)
If (pq) =0 for p<q p,qϵW then r=0 (n2r)
  • 2n
  • 2n1
  • 22n1
  • ^2nCn
Number of terms free from radical sign in the expansion of (1+31/3+71/2)10 is
  • 4
  • 5
  • 6
  • 8
The sum of the coefficients of all the even powers of x in the expansion of (2x23x+1)11 is
  • 2.610
  • 3.610
  • 611
  • None of the above
Number of rational terms in the expansion of (2+43)100 is
  • 25
  • 26
  • 27
  • 28
The sum of the binomial coefficients of \displaystyle \left [2 x+\frac{1}{x} \right ]^{n} is equal to  value of n is
  • 5
  • 6
  • 7
  • 8
(r + 1)^{th} term in the expansion of (x + a)^n will be
  • ^nC_rx^na^{n-r}
  • ^nC_rx^{n-r}a^{r}
  • ^nC_rx^{n-r}a^{n}
  • ^nC_rx^ra^{n-r}
If coefficients of x^n in (1+x)^{101}(1-x+x^2)^{100} is non-zero then n cannot be of the form
  • 3t+1
  • 3t
  • 3t+2
  • 4t+1
\displaystyle \binom{n}{o}+\binom{n}{1}+\binom{n}{2}+.........+\binom{n}{n}=
  • \displaystyle 2^{n-1}
  • \displaystyle ^{2n}C_{n}
  • \displaystyle 2^n
  • \displaystyle 2^{n+1}
Find the \displaystyle 7^{th} term of \displaystyle \left ( 3x^{2}-\frac{1}{3}\right)^{10}.
  • \displaystyle \frac{66}{3}x^{7}
  • \displaystyle \frac{70}{3}x^{7}
  • \displaystyle \frac{66}{3}x^{8}
  • \displaystyle \frac{70}{3}x^{8}
The value of \displaystyle 2\sum_{r=0}^{n}a_{2r-1} is
  • \displaystyle 9^{n}-1
  • \displaystyle 9^{n}+1
  • \displaystyle 9^{n}-2
  • \displaystyle 9^{n}+2
If {C}_{r} stands for ^{n}{C}_{r}, then the sum of the series \displaystyle\frac { 2\left( \frac { n }{ 2 }  \right) !\left( \frac { n }{ 2 }  \right) ! }{ n! } \left[ { C }_{ 0 }^{ 2 }-2{ C }_{ 1 }^{ 2 }+3{ C }_{ 2 }^{ 2 }-...+{ \left( -1 \right)  }^{ n }\left( n+1 \right) { C }_{ n }^{ 2 } \right] where n is an even positive integer, is
  • 0
  • { \left( -1 \right)  }^{ n/2 }\left( n+1 \right)
  • { \left( -1 \right)  }^{ n/2 }\left( n+2 \right)
  • { \left( -1 \right)  }^{ n }n
Find the middle terms in the expansion of \displaystyle \left ( 2x^{2}-\frac{1}{x} \right )^{7}
  • \displaystyle -560x^{5},\:280x^{2}
  • \displaystyle -280x^{5},\:560x^{2}
  • \displaystyle 560x^{5},\:-280x^{2}
  • \displaystyle 280x^{5},\:-560x^{2}
The number of terms in the expansion of ( 1 + 5\sqrt 2 x)^9 + ( 1 -5\sqrt 2 x)^9 is
  • 5
  • 7
  • 9
  • 10
In the expansion of (1 + x)^n, the sum of coefficients of odd powers of x is
  • 2^n+1
  • 2^n-1
  • 2^n
  • 2^{n-1}
If (1+x)^n=C_0+C_1x+C_2x^2+.....+C_nx^2, then the value of C_0+C_2+C_4+ ..... is
  • 2^{n-1}
  • 2^n-1
  • 2^n
  • 2^{n-1}-1
Which term in the expansion of \left (\displaystyle \frac {x}{3}-\frac {2}{x^2}\right )^{10} contains x^4?
  • 1
  • 3
  • 4
  • 5
If C_0, C_1, C_2, ..............C_n are binomial coefficients then \displaystyle \frac {1}{n!0!}+\frac {1}{(n-1)!1!}+\frac {1}{(n-2)!2!}+ ....+\frac {1}{0!n!} is equal to
  • 2^n
  • \displaystyle \frac {2^{n-1}}{n!}
  • \displaystyle \frac {2^n}{n!}
  • none of these
If the sum of the coefficients in the expansion of (1 -3x + 10x^2)^n is a and if the sum of the coefficients in the expansion of (1 + x^2)^n is b, then
  • a = 3b
  • a = b^3
  • b=a^3
  • none of these
\binom{n}{0}+2\binom{n}{1}+2^2\binom{n}{2}+ .... +2^n\binom{n}{n} is equal to
  • 2^n
  • 0
  • 3^n
  • none of these
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers