Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Binomial Theorem Quiz 8 - MCQExams.com

nrk=1nkCr=xCy
  • x=n+1;y=r
  • x=n;y=r+1
  • x=n;y=r
  • x=n+1;y=r+1
If (1+x)n=C0+C1x+C2x2.......Cnxn, then C20+C21+C22+C23+.......+C2n is equal to
  • n!n!n!
  • (2n)!n!n!
  • (2n)!n!
  • None of these
Find the 13th terms in the expansion of (9x13x)18,x0.
  • 18564
  • 87328
  • 17374
  • 35546
The co-efficient of x in  the expansion of (12x3+3x5)(1+1x)8 is :
  • 56
  • 65
  • 154
  • 62
The third term from the end in the expansion of (3x552x)8 is
  • 3545115x4
  • 4545516x4
  • 3937215x4
  • 3937516x4
The co-efficient of x5 in the expansion of (1+x)21+(1+x)22+........+(1+x)30 is: 
  • 51C5
  • 9C5
  • 31C621C6
  • 30C5+20C5
If Sn=nr=01nCrandtn=nr=0rnCr,thentnsn= 
  • 12n
  • 2n12
  • n1
  • 2n
In the expansion of (1+ax)n, nN, then the coefficient of x and x2 are 8 and 24 respectively. Then?
  • a=2,n=4
  • a=4,n=2
  • a=2,n=6
  • None of these
If |x|<1 then the coefficient of xn in expansion of (1+x+x2+x3....)2 is
  • n
  • n1
  • n+2
  • n+1
c0,c1,c2 denotes coefficents expansion of (1+x)n , then c1+c1c2+c2c3+.......cn1cn=(2n)!(n+1)!(n1)!
  • True
  • False
The sum of rational term in the expansion of (315+213)15 is
  • 31
  • 59
  • 51
  • 61
The middle term (s) in the expansion of (1+x)2n+1 is (are)
  • 2n+1CnXnand2n+1Cn+1Xn+1
  • 2n+1CnXn+1and2n+1Cn+1Xn
  • 2n+1Cn+1Xn
  • 2n+1Cn+1Xn+1
If 6th term in the expansion of [1x8/3+x2log10x]8 is 5600, then x is equal to 
  • 5
  • 4
  • 8
  • none of these
nr=0(r+2r+1) .nCr is equal to :
  • 2n(n+2)1(n+1)
  • 2n(n+1)1(n+1)
  • 2n(n+4)1(n+1)
  • 2n(n+3)1(n+1)
The value of 10r=0 20Cr is equal to?
  • 12(220+ 20C10)
  • 12(228+ 19C10)
  • 20(218+ 19C11)
  • 10(218+ 19C11)
In the binomial expansion of (ab)n,n5, the sum of the 5th and 6th terms is zero, then a/b is equals:
  • n56
  • n45
  • 5n4
  • 6n5
The first 3 terms in the expansion of (1+ax)n(n0) are 1,6x and 16x2. Then the value of a and n are respectively 
  • 2 and 9
  • 3 and 2
  • 2/3 and 9
  • 3/2 and 6
If f(x)+2f(1x)=x2+2,xR, then find f(x)
  • (x+3)23
  • (x3)23
  • (x2)24
  • (x2)23
The number of non-zero terms in the expansion of (7+1)75(71)75 is
  • 36
  • 37
  • 38
  • 39
The coefficient of x5 in the expansion of (1+x2)5(1x)4 is   
  • 4.6C4
  • 2.6C4
  • 2.6C2
  • 4.6C2
The number of rational terms in the expansion of (314+716)144 is
  • 33
  • 23
  • 12
  • 13
In the expansion of (y1/5+x1/10)55, the number of terms free of a radical sign is
  • 5
  • 6
  • 50
  • 56
For r=0,1,2,,....10 let Ar,Br and Cr denote respectively the coefficient of xr in the expansions of (1+x)10,(1+x)20 and (1+x)30. Then 10r=1Ar(B10BrC10Ar) is equal to
  • B10C10
  • A10(B210C10A10)
  • 0
  • C10B10
 The coefficient of the middle term in the expansion of (1+x)2n is equal to the sum of the coefficient of middle terms in the expansion of (1+x)2n1
the statement is true and false
  • True
  • False
The numerical value of middle terms in (11x)n(1x)n is
  • 2nCn
  • nCn
  • (2nCn)
  • (nCn)
The value of
(7C0+7C1)+(7C1+7C2)+.....(7C6+7C7) is
  • 271
  • 282
  • 281
  • 28
The number of rational terms in the expansion of (45+54)100 is
  • 50
  • 5
  • 6
  • 51
The rth term of series 212+1713+119+2023+..... is
  • 205r+3
  • 205r3
  • 20(5r+3)
  • 205r2+3
mCr.nC0+mCr1.nC1+mCr2.nC2+..........+mC0.nCr=m+nCr
  • True
  • False
If rth term is middle term in (x212x)20 then (r+3)th term is:
  • 20C7x213
  • (20C5x413)
  • (20C7x213)
  • (20C14x413)
The middle term in the expansion of (13x+3x2x3)6 is
  • 18C10 x10
  • 18C9(x)9
  • 18C9 x9
  • None of these
The value of C01.3C12.3+C23.3C34.3+.........+(1)nCn(n+1).3 is :
  • 3n+1
  • n+13
  • 13n+3
  • none of these
The sum of  the series 20C020C1+20C220C3+............+20C10is
  • 1220C10
  • 0
  • 20C10
  • 20C10
If the number of terms is the expansion (12x+4x2)n,x0, is 28, then the sum of coefficients of all the terms in this expansion, is :
  • 2187
  • 243
  • 729
  • 64
The sum of coefficients of integral powers of x in the binomial expansion of (12x)50 is : 
  • 12(3501)
  • 12(250+1)
  • 12(350+1)
  • 12(350)
If A and B are coefficients of xn in the expansion of (1+x)2n and (1+x)2n1 respectively, then
  • A=B
  • A=2B
  • 2A=B
  • A+B=0
If(1+x)n=C0+C1x+C2x2+......+Cnxn,  then C0+5C1+9C2+.....+(4n+1)Cn is equal to 
  • n.2n
  • (n+1)2n
  • (2n+1)2n
  • (4n+1)2n
If the rth term in the expansion of (x32x2)10 contains x4 then r is equal to 
  • 2
  • 3
  • 4
  • 5
If the sum of the binomial coefficients in the expansion of (x2+2x3)n is 243, the term independent of x is equal to 
  • 40
  • 30
  • 20
  • 10
If x4 occurs in the rth term in the expansion of (x4+1x3)15, then r=
  • 7
  • 8
  • 9
  • 10
If (1xx2)20 = 40r=0a4,xx, then 
a1+3a3+5a5+........+39a39=
  • 40
  • 40
  • 80
  • 80
whether the sum of the coefficients in the expansion of (1+x3x2)2163 is 6
  • True
  • False
If the constant term in the expansion of (x21x)n is 15 then the value of n is
  • 6
  • 9
  • 12
  • 15
In the expansion of (1+2x+3x2)10, coefficient of x4 is not divisible by
  • 12
  • 7
  • 11
  • 5
Coefficient of α in the expansion of (α+p)m1+(α+p)m2(α+q)m3(α+q)2+....(α+q)m1 where αq and pq is: 
  • mC1(p1q1)pq
  • mC1(pm1qm1)pq
  • mC1(p1+q1)pq
  • mC1(pm1+qm1)pq
If the rth and the (r+1)th terms in the expansion of (p+q)n are equal, then (n+1)qr(p+q) is
  • 1/2
  • 1/4
  • 1
  • 0
Number of distinct terms in the expansion of (x+yz)16 is 
  • 816
  • 152
  • 153
  • 136
Find the coefficient of x11 in the expansion of (x32x2)12
  • 25344
  • 25250
  • 25000
  • 25750
The number of terms in the expansion of (1+x)101(1+x2x)100 in power of x is:
  • 302
  • 301
  • 202
  • 101
If (1+x+x2)8=a0+a1x+.....a16x16 then a1a3+a5a7+.......a15=
  • 1
  • 2
  • 3
  • 0
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers