Processing math: 10%

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 1 - MCQExams.com

Express 1(1cosθ+2isinθ) in the form x+iy
  • (15+3cosθ)+(2cotθ/25+3cosθ)i
  • (153cosθ)+(2cotθ/253cosθ)i
  • (15+3cosθ)+(2cotθ/25+3cosθ)i
  • (153cosθ)+(2cotθ/253cosθ)i
If z=x+iy and ω=(1iz)(zi), then |ω|=1 implies that in the complex plane
  • z lies on the imaginary axis
  • z lies on the real axis
  • z lies on the unit circle
  • none of these
If a,b and c are real numbers then the roots of the equation (xa)(xb)+(xb)(xc)+(xc)(xa)=0 are always
  • Real
  • Imaginary
  • Positive
  • Negative
If (x+iy)(23i)=4+i then (x, y) =
  • (1,113)
  • (513,1413)
  • (513,1413)
  • (513,1413)
If z =3+5i, then z^3+z+198=
  • 3 - 15i
  • -3 - 15i
  • -3 + 15i
  • 3 + 15i
If z=2-3i then z^2-4z+13=
  • 0
  • 1
  • 2
  • 3
The complex number \displaystyle \frac{1+2i}{1-i} lies in the quadrant :
  • I
  • II
  • III
  • IV
\sqrt{-3}\sqrt{-75}=
  • 15
  • 15i
  • -15
  • -15i
The sum of two complex numbers a + ib and c +id is a real number if
  • a + c = 0
  • b + d = 0
  • a + b= 0
  • b + c = 0
The locus of complex number z such that z is purely real and real part is equal to - 2 is
  • Negative y-axis
  • Negative x-axis
  • The point (-2, 0)
  • The point (2, 0)
\dfrac{1}{i-1}+\dfrac{1}{i+1} is
  • positive rational number
  • purely imaginary
  • positive Integer
  • negative integer
The argument of every complex number is
  • Double valued
  • Single valued
  • Many valued
  • Triple valued
The sum of two complex numbers a + ib and c+ id is purely imaginary if
  • a + c = 0
  • a + d = 0
  • b + d = 0
  • b + c = 0
For a < 0, arg (ia) =  
  • \dfrac{\pi }{2}
  • -\dfrac{\pi }{2}
  • \pi
  • -\pi
The principal value of the argument of -\sqrt{3}+i is :
  • \dfrac{\pi }{6}
  • \dfrac{3\pi }{6}
  • \dfrac{5\pi }{6}
  • \dfrac{7\pi }{6}
Amplitude of \dfrac{1+i}{1-i} is :
  • 0
  • \pi
  • \dfrac{\pi }{2}
  • -\pi
Which of the following equations has two distinct real roots ?
  • 2x^2-3\sqrt 2 x+\dfrac 94=0
  • x^{2}+x-5=0
  • x^{2}+3x+2\sqrt{2}=0
  • 5x^{2}-3x+1=0
A quadratic equation ax^2 + bx+c=0 has two distinct real roots, if 
  • a=0
  • b^2-4ac = 0
  • b^2-4ac < 0
  • b^2-4ac > 0
For a > 0, arg (ia) =
  • \dfrac{\pi }{2}
  • -\dfrac{\pi }{2}
  • \pi
  • -\pi
The modulus of \sqrt{2}i-\sqrt{-2}i is:
  • 2
  • \sqrt{2}
  • 0
  • 2\sqrt{2}
The roots of the equation 3x^{2} - 4x + 3 = 0 are :
  • real and unequal
  • real and equal
  • imaginary
  • none of these
For a<0,  arg a=
  • \dfrac{\pi }{2}
  • \dfrac{-\pi }{2}
  • \pi
  • -\pi
If the square of (a + ib) is real, then ab=
  • 0
  • 1
  • -1
  • 2
Find the argument of -1 - i\sqrt{3}
  • \theta= -2\pi/3
  • \theta= 2\pi/3
  • \theta= -4\pi/3
  • \theta= 4\pi/3
The roots of x^{2}-x+1=0 are:
  • Real and equal
  • Real and not equal
  • Imaginary
  • Reciprocals
Nature of the roots of the quadratic equation 2x^{2}-2\sqrt{6}x+3=0 is:
  • Real, irrational, unequal
  • Real, rational, equal
  • Real, rational, unequal
  • Complex
Determine the nature of roots of the equation x^2 + 2x\sqrt{3}+3=0.
  • Real and distinct
  • Non-real and distinct
  • Real and equal
  • Non-real and equal
Find the value of x of the equation { \left( 1-i \right)  }^{ x }={ 2 }^{ x } 
  • 1
  • 2
  • 0
  • none of these
If the discriminant of a quadratic equation is negative, then its roots are:
  • unequal
  • equal
  • inverse
  • imaginary
Solve \displaystyle \left ( 1-i \right )x+\left ( 1+i \right )y= 1-3i,
  • \displaystyle x= -1, y= 2.
  • \displaystyle x= 2, y= -1.
  • \displaystyle x= 2, y= 1.
  • \displaystyle x= 1, y= 2.
The roots of 4x^{2}-2x+8=0 are:
  • Real and equal
  • Rational and not equal
  • Irrational
  • Not real
Evaluate :
 \sqrt{-25} + 3 \sqrt{-4} +2 \sqrt{-9}
  • -17i
  • 5i
  • 17i
  • 6i
If x^{2}-2px+8p-15=0 has equal roots, then p=
  • 3 or -5
  • 3 or 5
  • -3 or 5
  • -3 or -5
Determine the values of p for which the quadratic equation 2x^2 + px + 8 = 0 has equal roots.
  • p=\pm 64
  • p=\pm 8
  • p=\pm 4
  • p=\pm 16
Find the values of k for the following quadratic equation, so that they have two real and equal roots:
2x^2 + k x + 3 = 0
  • k = \pm 2\sqrt 3
  • k = \pm 2\sqrt 6
  • k = \pm \sqrt 6
  • k = \pm \sqrt 3
\displaystyle \frac{\displaystyle i^{4n + 3} + (-i)^{8n - 3}}{\displaystyle(i)^{12 n- 1} - i^{2 - 16 n}}, n    \varepsilon N is equal to
  • 1 + i
  • 2i
  • -2i
  • -1 - i
1+i^2 + i^4 + i^6 + ........+ i^{2n} is
  • Positive
  • Negative
  • Zero
  • Cannot be determined
Find the modulus and the principal value of the argument of the number 1-i
  • \displaystyle \sqrt{2},\pi/4
  • \displaystyle \sqrt{2},-\pi/4
  • \displaystyle \sqrt{2},-\pi/3
  • \displaystyle \sqrt{2},3\pi/4
If i^2 = - 1, then the value of \displaystyle \sum^{200}_{n = 1} i^n is
  • 50
  • -50
  • 0
  • 100
If i = \sqrt {-1}, then  1 + i^2 + i^3 -i^6 + i^8 is equal to -
  • 2- i
  • 1
  • -3
  • -1
Check whether 2x^2 - 3x + 5 = 0 has real roots or no.
  • The equation has real roots.
  • The equation has no real roots.
  • Data insufficient
  • None of these
(i^{10}+1) (i^9 + 1)(i^8 +1).......(i+1)  equal to 
  • -1
  • 1
  • 0
  • i
If i^2 = -1, then find the odd one out of the following expressions.
  • -i^2
  • (-i)^2
  • i^4
  • (-i)^4
  • -i^6
When (3-2i) is subtracted from (4 + 7i), then the result is
  • 1 + 5i
  • 1 + 9i
  • 7 + 5i
  • 7 + 9i
The value of k for which polynomial x^{2} - kx + 4 has equal zeroes is
  • 4
  • 2
  • -4
  • -2
If the discriminant of a quadratic equation is negative, then its roots are
  • Unequal
  • Equal
  • Inverses
  • Imaginary
If the equation (1 + m^{2}) x^{2} + 2mcx + (c^{2} - a^{2}) = 0 has equal roots, then c^{2} = 
  • a^{2} (1 + m^{2})
  • a (1 + m^{2})
  • a^{4} (1 - m^{2})
  • a^{2} (1 - m^{2})
Amplitude of \displaystyle \frac{1 +\sqrt 3i}{ \sqrt3 + i} is
  • \displaystyle \frac {\pi}{3}
  • \displaystyle \frac {\pi}{2}
  • 0
  • \displaystyle \frac {\pi}{6}
For i=\sqrt{-1}, what is the sum \left(7+3i\right) + \left(-8+9i\right)?
  • -1+12i
  • -1-6i
  • 15+12i
  • 15-6i
If the equation \displaystyle x^{2}-bx+1=0 does not possess real roots then
  • -3 < b < 3
  • -2 < b < 2
  • b > 2
  • b < -2
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers