Processing math: 10%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 1 - MCQExams.com
CBSE
Class 11 Engineering Maths
Complex Numbers And Quadratic Equations
Quiz 1
Express
1
(
1
−
c
o
s
θ
+
2
i
s
i
n
θ
)
in the form
x
+
i
y
Report Question
0%
(
1
5
+
3
c
o
s
θ
)
+
(
2
c
o
t
θ
/
2
5
+
3
c
o
s
θ
)
i
0%
(
1
5
−
3
c
o
s
θ
)
+
(
−
2
c
o
t
θ
/
2
5
−
3
c
o
s
θ
)
i
0%
(
1
5
+
3
c
o
s
θ
)
+
(
−
2
c
o
t
θ
/
2
5
+
3
c
o
s
θ
)
i
0%
(
1
5
−
3
c
o
s
θ
)
+
(
2
c
o
t
θ
/
2
5
−
3
c
o
s
θ
)
i
Explanation
To Express
1
(
1
−
c
o
s
θ
+
2
i
s
i
n
θ
)
in the form
x
+
i
y
We have ,
1
(
1
−
c
o
s
θ
+
2
i
s
i
n
θ
)
=
1
(
1
−
c
o
s
θ
)
+
2
i
s
i
n
θ
×
(
1
−
c
o
s
θ
)
−
2
i
s
i
n
θ
(
1
−
c
o
s
θ
)
−
2
i
s
i
n
θ
=
(
1
−
c
o
s
θ
−
2
i
s
i
n
θ
)
(
1
−
c
o
s
θ
)
2
+
(
2
s
i
n
θ
)
2
=
(
1
−
c
o
s
θ
−
2
i
s
i
n
θ
)
1
+
c
o
s
2
θ
−
2
c
o
s
θ
+
4
s
i
n
2
θ
=
(
1
−
c
o
s
θ
)
(
1
−
c
o
s
θ
)
(
3
c
o
s
θ
+
5
)
−
2
i
s
i
n
θ
(
1
−
c
o
s
θ
)
(
3
c
o
s
θ
+
5
)
=
1
(
3
c
o
s
θ
+
5
)
−
2
i
s
i
n
θ
2
c
o
s
θ
2
2
s
i
n
2
θ
2
(
3
c
o
s
θ
+
5
)
=
1
(
3
c
o
s
θ
+
5
)
−
2
c
o
t
θ
2
(
3
c
o
s
θ
+
5
)
i
=
1
(
5
+
3
c
o
s
θ
)
+
(
−
2
c
o
t
θ
/
2
)
(
5
+
3
c
o
s
θ
)
i
Hence , Option C
If
z
=
x
+
i
y
and
ω
=
(
1
−
i
z
)
(
z
−
i
)
, then
|
ω
|
=
1
implies that in the complex plane
Report Question
0%
z lies on the imaginary axis
0%
z lies on the real axis
0%
z lies on the unit circle
0%
none of these
Explanation
Given
w
=
1
−
i
z
z
−
i
and
|
w
|
=
1
⇒
|
1
−
i
z
z
−
i
|
=
1
...(1)
Substitute
z
=
x
+
i
y
in equation (1)
⇒
|
1
−
i
(
x
+
i
y
)
(
x
+
i
y
)
−
i
|
=
1
⇒
|
1
+
y
−
i
x
|
=
|
x
+
i
(
y
−
1
)
|
⇒
(
1
+
y
)
2
+
x
2
=
x
2
+
(
y
−
1
)
2
⇒
y
=
0
Therefore z lies on the real axis.
Ans: B
If
a
,
b
and
c
are real numbers then the roots of the equation
(
x
−
a
)
(
x
−
b
)
+
(
x
−
b
)
(
x
−
c
)
+
(
x
−
c
)
(
x
−
a
)
=
0
are always
Report Question
0%
Real
0%
Imaginary
0%
Positive
0%
Negative
Explanation
Given equation is
(
x
−
a
)
(
x
−
b
)
+
(
x
−
b
)
(
x
−
c
)
+
(
x
−
c
)
(
x
−
a
)
=
0
⇒
3
x
2
−
2
(
b
+
a
+
c
)
x
+
a
b
+
b
c
+
c
a
=
0
Now, here
A
=
3
,
B
=
−
2
(
a
+
b
+
c
)
C
=
a
b
+
b
c
+
c
a
Therefore,
D
=
√
B
2
−
4
A
C
=
√
(
−
2
(
a
+
b
+
c
)
)
2
−
4
(
3
)
(
a
b
+
b
c
+
c
a
)
=
√
4
(
a
+
b
+
c
)
2
−
12
(
a
b
+
b
c
+
c
a
)
=
2
√
a
2
+
b
2
+
c
2
−
a
b
−
b
c
−
c
a
=
2
√
1
2
{
(
a
−
b
)
2
−
(
b
−
c
)
2
+
(
c
−
a
)
2
}
≥
0
This is always
≥
0
, we have real roots for the equation
(
x
−
a
)
(
x
−
b
)
+
(
x
−
b
)
(
x
−
c
)
+
(
x
−
c
)
(
x
−
a
)
=
0
If
(
x
+
i
y
)
(
2
−
3
i
)
=
4
+
i
then (x, y) =
Report Question
0%
(
1
,
1
13
)
0%
(
−
5
13
,
14
13
)
0%
(
5
13
,
14
13
)
0%
(
−
5
13
,
−
14
13
)
Explanation
(
x
+
i
y
)
(
2
−
3
i
)
=
4
+
i
2
x
−
(
3
x
)
i
+
(
2
y
)
i
−
3
y
i
2
=
4
+
i
2
x
+
3
y
⏟
R
e
a
l
+
(
2
y
−
3
x
)
⏟
I
m
a
g
i
n
a
r
y
i
=
4
+
i
Comparing the real & imaginary parts,
2
x
+
3
y
=
4
--------------------------(1)
2
y
−
3
x
=
1
----------------------------(2)
Solving eq(1) & eq(2),
4
x
+
6
y
=
8
−
9
x
+
6
y
=
3
13
x
=
5
⇒
x
=
5
13
y
=
14
13
\therefore (x,y)=\left (\dfrac{5}{13},\dfrac{14}{13} \right )
If
z =3+5i
, then
z^3+z+198=
Report Question
0%
3 - 15i
0%
-3 - 15i
0%
-3 + 15i
0%
3 + 15i
Explanation
z=3+5i
z^{3}=(3+5i)^{3}
=3^{3}+3.3^{2}(5i)+3.3(5i)^{2}+(5i)^{3}
=27-125i+135i-225
=-225+27+(135-125)i
=-198+10i
\therefore z^{3}+z+198
=-198+10i+3+5i+198
=3+15i
If
z=2-3i
then
z^2-4z+13=
Report Question
0%
0
0%
1
0%
2
0%
3
Explanation
z=2-3i
z^{2}=2^{2}-3^{2}-12i
=-5-12i
\therefore z^{2}-4z+13
=(-5-12i)-4(2-3i)+13
=-5-12i-8+12i +13
=-13+13
=0
The complex number
\displaystyle \frac{1+2i}{1-i}
lies in the quadrant :
Report Question
0%
I
0%
II
0%
III
0%
IV
Explanation
Let
z =\dfrac{1+2i}{1-i}
\Rightarrow z =\dfrac{(1+2i)}{1-i}\times \dfrac{1+i}{1+i}
= \dfrac{1+2i+i+2i^2}{1-i^2}
=\dfrac{1+3i-2}{1+1}
............
[\because i^2 = -1]
\Rightarrow z =\dfrac{-1+3i}{2}
=-\dfrac{1}{2}+\dfrac{3}{2}i
=x+iy
Clearly
x<0
and
y>0
Hence
z
lies in
\text{II}
quadrant
\sqrt{-3}\sqrt{-75}=
Report Question
0%
15
0%
15i
0%
-15
0%
-15i
Explanation
\sqrt{-3}\times\sqrt{-75}=\sqrt{3\times(-1)}\sqrt{75\times(-1)}
=\sqrt{3}i\times\sqrt{75}i
=\sqrt{225}i^{2}
= - 15
The sum of two complex numbers
a + ib
and
c +id
is a real number if
Report Question
0%
a + c = 0
0%
b + d = 0
0%
a + b= 0
0%
b + c = 0
Explanation
It is given that
z_{1}=a+ib
and
z_{2}=c+id
Then
z_{1}+z_{2}=(a+c)+i(b+d)
Now
(z_{1}+z_{2})
is purely real.
Then the imaginary part has to be
0
.
Hence
b+d=0
.
The locus of complex number z such that z is purely real and real part is equal to - 2 is
Report Question
0%
Negative y-axis
0%
Negative x-axis
0%
The point (-2, 0)
0%
The point (2, 0)
Explanation
z=x+iy
(x,y)
z
is purely real and the real part equals
-2
\therefore y=0
&
x=-2
z=-2
Hence, this would be represented by the point (-2,0) on the Argand Plane.
\dfrac{1}{i-1}+\dfrac{1}{i+1}
is
Report Question
0%
positive rational number
0%
purely imaginary
0%
positive Integer
0%
negative integer
Explanation
Let
Z= \dfrac{1}{i-1}+\dfrac{1}{i+1}
=\dfrac{i+1+i-1}{(i-1)(i+1)}
=\dfrac{i+i}{(i^2-1^2)}
=\dfrac{2i}{-2}
\therefore Z=-i
The argument of every complex number is
Report Question
0%
Double valued
0%
Single valued
0%
Many valued
0%
Triple valued
Explanation
z=x+iy
amplitude
= tan^{-1}\frac{y}{x}
\Rightarrow
amplitude
=\theta \pm 2k\pi
where
\theta \epsilon \left [ -\pi ,\pi \right ]
\forall k\epsilon R
since
k\epsilon R
\Rightarrow
Amplitude of any complex number is many valued.
The sum of two complex numbers
a + ib
and
c+ id
is purely imaginary if
Report Question
0%
a + c = 0
0%
a + d = 0
0%
b + d = 0
0%
b + c = 0
Explanation
It is given that
z_{1}=a+ib
and
z_{2}=c+id
z_{1}+z_{2}=(a+c)+i(b+d)
z_{1}+z_{2}
is purely imaginary. (Given)
Then the real part has to be
0
.
Hence
a+c=0
.
For
a < 0
, arg
(ia) =
Report Question
0%
\dfrac{\pi }{2}
0%
-\dfrac{\pi }{2}
0%
\pi
0%
-\pi
Explanation
Let
z= ia
a <0
. Hence
z
must lie on the negative imaginary axis ,
Hence,
arg(z) = -\dfrac{\pi}{2}
The principal value of the argument of
-\sqrt{3}+i
is :
Report Question
0%
\dfrac{\pi }{6}
0%
\dfrac{3\pi }{6}
0%
\dfrac{5\pi }{6}
0%
\dfrac{7\pi }{6}
Explanation
Given,
z=-\sqrt 3+i
We have
| z| = \sqrt{\sqrt{3}^2 +1^2} =2
Therefore,
\cos \theta = \dfrac{-\sqrt{3} }{2}
and
\sin \theta = \dfrac{1}{2}
Hence,
\theta =\dfrac{5\pi}{6}
Amplitude of
\dfrac{1+i}{1-i}
is :
Report Question
0%
0
0%
\pi
0%
\dfrac{\pi }{2}
0%
-\pi
Explanation
\dfrac{1+i}{1-i}
=\dfrac{(1+i)(1+i)}{(1-i)(1+i)}
=\dfrac{(1+i)^{2}}{1^{2}-i^{2}}
=\dfrac{1-1+2i}{2}
=i
therefore amplitude
=\dfrac{\pi }{2}
Which of the following equations has two distinct real roots ?
Report Question
0%
2x^2-3\sqrt 2 x+\dfrac 94=0
0%
x^{2}+x-5=0
0%
x^{2}+3x+2\sqrt{2}=0
0%
5x^{2}-3x+1=0
Explanation
An equation is said to have two distinct and real roots if the discriminant
b^2-4ac>0
Case (i): For equation:
2x^2-3\sqrt 2 x+\dfrac 94=0
.
Here
a=2, b=-3\sqrt 2, c=\dfrac 94
The discrimant is
(-3\sqrt 2)^2-4(2)\left(\dfrac 94\right)=18-18=0
Hence this equation has equal real roots
Case (ii): For equation:
x^2+x-5=0
.
Here
a=1, b=1, c=-5
The discrimant is
1^2-4(1)(-5)=1+20=21>0
Hence this equation has two distinct real roots
Case (iii): For equation:
x^2+3x+2\sqrt 2=0
.
Here
a=1, b=3, c=2\sqrt 2
The discrimant is
3^2-4(1)(2\sqrt2)=9-8\sqrt 2<0
Hence this equation has no real roots
Case (iv): For equation:
5x^2-3x+1=0
.
Here
a=5, b=-3, c=1
The discrimant is
(-3)^2-4(5)(1)=9-20<0
Hence this equation has no real roots
A quadratic equation
ax^2 + bx+c=0
has two distinct real roots, if
Report Question
0%
a=0
0%
b^2-4ac = 0
0%
b^2-4ac < 0
0%
b^2-4ac > 0
Explanation
If
a=0
, it becomes linear equation.
If
{ b }^{ 2 }-4ac=0
, then there will be real and equal roots.
If
{ b }^{ 2 }-4ac<0
, then the roots will be unreal.
Only if
{ b }^{ 2 }-4ac>0
, we will get two real distinct roots.
Option D is correct!
For
a > 0
, arg
(ia) =
Report Question
0%
\dfrac{\pi }{2}
0%
-\dfrac{\pi }{2}
0%
\pi
0%
-\pi
Explanation
z= 0 + ia
\therefore arg(z) = arg (ia) = \tan^{-1} \cfrac a0
=
\cfrac {\pi}{2}
...(since a is greater than or equal to zero)
The modulus of
\sqrt{2}i-\sqrt{-2}i
is:
Report Question
0%
2
0%
\sqrt{2}
0%
0
0%
2\sqrt{2}
Explanation
Let
z=\sqrt{2}i-\sqrt{-2}i
\Rightarrow z=\sqrt{2}i-\sqrt{2}i^2
\Rightarrow z=\sqrt{2}+\sqrt{2}i
Now,
|z|=\sqrt{2+2}=2
The roots of the equation
3x^{2} - 4x + 3 = 0
are :
Report Question
0%
real and unequal
0%
real and equal
0%
imaginary
0%
none of these
Explanation
Given equation is
3x^2-4x+3=0
To find, the nature of the roots of the equation
An equation is said to have
(i) two distinct and real roots if the discriminant
b^2-4ac>0
(ii) equal real roots if
b^2-4ac=0
(iii) no real roots or imaginary roots if
b^2-4ac<0
In the given equation
a=3, b=-4, c=3
Hence the discriminant is
(-4)^2-4(3)(3)=16-36=-20<0
Therefore the roots of the given equation are imaginary in nature.
For
a<0
, arg
a=
Report Question
0%
\dfrac{\pi }{2}
0%
\dfrac{-\pi }{2}
0%
\pi
0%
-\pi
Explanation
It is given that
a<0
Thus, 'a' is purely real.
Hence
arg(a)
will be
0
or,
\pi
But it is given that
a<0
Hence
cos(arg(a))=-1
Or
arg(a)=\pi
.
If the square of
(a + ib)
is real, then
ab=
Report Question
0%
0
0%
1
0%
-1
0%
2
Explanation
(a+ib)^{2}=a^{2}-b^{2}+2iab
is given to be real
\Rightarrow ab=0
Find the argument of
-1 - i\sqrt{3}
Report Question
0%
\theta= -2\pi/3
0%
\theta= 2\pi/3
0%
\theta= -4\pi/3
0%
\theta= 4\pi/3
Explanation
Let
z = -1 -i\sqrt{3}
Then
\alpha = \tan^{-1}\left|b/a\right| = \tan^{-1} \left|\sqrt{3}/1\right| = \pi/3
Here,
z
is in the third quadrant.
Therefore, argument is
\theta= -(\pi - \alpha) = -(\pi - \pi/3) = -2\pi/3
Ans: A
The roots of
x^{2}-x+1=0
are:
Report Question
0%
Real and equal
0%
Real and not equal
0%
Imaginary
0%
Reciprocals
Explanation
Given equation is
x^2-x+1=0
We know
D=b^{2}-4ac
Here
a=1, b=-1, c=1
Therefore,
D=(-1)^{2}-4(1)(1)
=1-4
=-3< 0
Thus roots are imaginary.
Nature of the roots of the quadratic equation
2x^{2}-2\sqrt{6}x+3=0
is:
Report Question
0%
Real, irrational, unequal
0%
Real, rational, equal
0%
Real, rational, unequal
0%
Complex
Explanation
(B)
b^{2}-4ac=(-2\sqrt{6})^{2}-4(2)(3)
=24-24
=0
\therefore
Real, rational, equal
Determine the nature of roots of the equation
x^2 + 2x\sqrt{3}+3=0
.
Report Question
0%
Real and distinct
0%
Non-real and distinct
0%
Real and equal
0%
Non-real and equal
Explanation
The nature of the roots can be determined from the discriminant
b^2-4ac
\therefore b^2-4ac=(2\sqrt {3})^2-(4\times 1\times 3)
\Rightarrow b^2-4ac=12-12
\Rightarrow b^2-4ac=0
\because b^2-4ac=0
There are two real and equal roots.
Find the value of
x
of the equation
{ \left( 1-i \right) }^{ x }={ 2 }^{ x }
Report Question
0%
1
0%
2
0%
0
0%
none of these
Explanation
Then
{ \left( 1-i \right) }^{ x }={ 2 }^{ x }
\Rightarrow |{(1-i)}|^{x} =|2|^{x}
\Rightarrow { \left( \sqrt {1+1}\right)}^{x}={2}^{x}
\Rightarrow { \left( \sqrt { 2 } \right) }^{ x }={ 2 }^{ x }
\Rightarrow \dfrac{x}{2}=x
\Rightarrow 2x=x\Rightarrow x=0
Hence, option C is correct.
If the discriminant of a quadratic equation is negative, then its roots are:
Report Question
0%
unequal
0%
equal
0%
inverse
0%
imaginary
Explanation
If the discriminant
b^2 - 4ac
of a quadratic equation is negative, then its roots are imaginary.
Solve
\displaystyle \left ( 1-i \right )x+\left ( 1+i \right )y= 1-3i,
Report Question
0%
\displaystyle x= -1, y= 2.
0%
\displaystyle x= 2, y= -1.
0%
\displaystyle x= 2, y= 1.
0%
\displaystyle x= 1, y= 2.
Explanation
\displaystyle \left ( 1-i \right )x+\left ( 1+i \right )y= 1-3i.
Equating real and imaginary parts, we get
\displaystyle x+y= 1
and
\displaystyle -x+y= -3.
Adding both equations we get
y=-1
Substituting this value of
y
in any of the 2 equations, we get
x=2
\therefore \displaystyle x= 2, y= -1.
Ans: B
The roots of
4x^{2}-2x+8=0
are:
Report Question
0%
Real and equal
0%
Rational and not equal
0%
Irrational
0%
Not real
Explanation
Given equation is
4x^2-2x+8=0
We know value of discriminant
D=b^{2}-4ac
Here
a=4, b=-2, c=8
Therefore,
D=(-2)^{2}-4(4)(8)
=4-128
=-124< 0
Hence, roots are not real.
Evaluate :
\sqrt{-25} + 3 \sqrt{-4} +2 \sqrt{-9}
Report Question
0%
-17i
0%
5i
0%
17i
0%
6i
Explanation
\sqrt{-25} + 3 \sqrt{-4} +2 \sqrt{-9}
=5\sqrt{-1}+6\sqrt{-1}+6\sqrt{-1}
we know,
\sqrt{-1}=i
= 5i + 6i + 6i = 17i
If
x^{2}-2px+8p-15=0
has equal roots, then
p=
Report Question
0%
3
or
-5
0%
3
or
5
0%
-3
or
5
0%
-3
or
-5
Explanation
Given equation is
x^2-2px+8p-15=0
Here
a=1, b=-2p, c=8p-15
We know for equal roots,
b^{2}-4ac=0
Therefore,
(-2p)^{2}-4(1)(8p-15)=0
\Rightarrow 4p^{2}-32p+60=0
\Rightarrow p^{2}-8p+15=0
\Rightarrow (p-5)(p-3)=0
i.e.,
p=5
or
3
Determine the values of
p
for which the quadratic equation
2x^2 + px + 8 = 0
has
equal roots.
Report Question
0%
p=\pm 64
0%
p=\pm 8
0%
p=\pm 4
0%
p=\pm 16
Explanation
In
ax^2+bx+c=0,
Discriminant
D
=b^2-4ac
,
D
=0
, for the roots to be real and equal
In
2x^{2}+px+8=0
Thus, we have
a=2 ,b=p
and
c=8
Then
D
=b^2-4ac=0
\therefore p^{2}-4\times 2\times 8=0\Rightarrow p^{2}-64=0
\Rightarrow p=\pm 8
.
Find the values of
k
for the following quadratic equation, so that they have two real and equal roots:
2x^2 + k x + 3 = 0
Report Question
0%
k = \pm 2\sqrt 3
0%
k = \pm 2\sqrt 6
0%
k = \pm \sqrt 6
0%
k = \pm \sqrt 3
Explanation
In
ax^2+bx+c=0
Discriminant
D=b^2-4ac
If
D=0
, so they have equal and real roots.
Then,
2x^{2}+kx+3=0
a=2
,
b=k
and
c=3
D=k^{2}-4\times 2\times 3=0
\Rightarrow k^{2}-24=0
\Rightarrow k=\pm \sqrt{24}
\Rightarrow k=\pm 2\sqrt{6}
\displaystyle \frac{\displaystyle i^{4n + 3} + (-i)^{8n - 3}}{\displaystyle(i)^{12 n- 1} - i^{2 - 16 n}}, n \varepsilon N
is equal to
Report Question
0%
1 + i
0%
2i
0%
-2i
0%
-1 - i
Explanation
Given expression
= \displaystyle \frac{\displaystyle i^3 + (-1) (i)^{-3}}{(-i)^{-1} - (i)^2} = \frac{\displaystyle -i - i}{\displaystyle i + 1}
=\displaystyle \frac{\displaystyle -2i}{1 + i} \times \frac{1 - i}{1 - i} = \frac{\displaystyle -2i - 2}{\displaystyle 1 + 1} = - 1 - i
1+
i^2 + i^4 + i^6 + ........+ i^{2n}
is
Report Question
0%
Positive
0%
Negative
0%
Zero
0%
Cannot be determined
Explanation
1+i^2+i^4+........+i^{2n}
=1-1+1-1+1-1......
Hence it can b positive or negative depending on the value of
2n
Hence It cannot be determined from the given data.
Find the modulus and the principal value of the argument of the number
1-i
Report Question
0%
\displaystyle \sqrt{2},\pi/4
0%
\displaystyle \sqrt{2},-\pi/4
0%
\displaystyle \sqrt{2},-\pi/3
0%
\displaystyle \sqrt{2},3\pi/4
Explanation
Let
\displaystyle 1=r\cos \theta ,-1=r\sin \theta
Squaring and adding these relations, we get
\displaystyle r^{2}\left ( \cos ^{2}\theta +\sin ^{2}\theta \right )=1^{2}+\left ( -1 \right )^{2}=2
.
Since,
cos^2\theta+sin^2\theta=1, \Rightarrow r=\pm\sqrt{2}
r
cannot be negative
Hence.
r=\sqrt{2}
Then
\displaystyle \cos \theta =\dfrac{1}{\sqrt{2}},\sin \theta =\dfrac{-1}{\sqrt{2}},
The value of
\displaystyle \theta
between-
\displaystyle \pi
and
\displaystyle \pi
which satisfies these equations is
\displaystyle -\left ( \pi /4 \right )
Thus
\displaystyle \left | 1-i \right |=r=\sqrt{2}
and
arg (1-i)=-\displaystyle \left ( \pi /4 \right ).
Ans: B
If
i^2 = - 1
, then the value of
\displaystyle \sum^{200}_{n = 1} i^n
is
Report Question
0%
50
0%
-50
0%
0
0%
100
Explanation
Given,
i^2=-1
\displaystyle \sum_{n = 1}^{200} i^n = i + i^2 + i^3 + ......... + i^{200} = \displaystyle \frac{i (1 - i^{200})}{1 - i}
(since G. P.)
= \displaystyle \frac{\displaystyle i (1 - 1)}{\displaystyle 1 - i} = 0
If i =
\sqrt {-1}, then 1 + i^2 + i^3 -i^6 + i^8
is equal to -
Report Question
0%
2- i
0%
1
0%
-3
0%
-1
Explanation
Given,
i= \sqrt {-1}
\therefore 1+i^{ 2 }+i^{ 3 }-i^{ 6 }+i^{ 8 }=1-1-i+1+1
=2-i
Check whether
2x^2 - 3x + 5 = 0
has real roots or no.
Report Question
0%
The equation has real roots.
0%
The equation has no real roots.
0%
Data insufficient
0%
None of these
Explanation
Here the quadratic equation is
2x^2 - 3x + 5 = 0
Comparing it with
ax^2+bx+c=0
, we get
a=2, b=-3, c=5
Therefore, discriminant,
D=b^2-4ac
(-3)^2-4\times 2\times 5
=9-40
=-31
Here,
D<0
Therefore the equation has no real roots.
(
i^{10}+1) (i^9 + 1)(i^8 +1).......(i+1)
equal to
Report Question
0%
-1
0%
1
0%
0
0%
i
Explanation
(i^{10}+1) (i^9 + 1)(i^8 +1).......(i+1)
=(i^{10}+1) (i^9 + 1)(i^8 +1).......(i^3+1)(i^2+1)(i+1)
=(i^{10}+1) (i^9 + 1)(i^8 +1).......(i^3+1)(-1+1)(i+1)[\because i^2=-1]
=(i^{10}+1) (i^9 + 1)(i^8 +1).......(i^3+1)(0)(i+1) =0
If
i^2
= -1
, then find the odd one out of the following expressions.
Report Question
0%
-i^2
0%
(-i)^2
0%
i^4
0%
(-i)^4
0%
-i^6
Explanation
i
is an imagiary number which has a value of
i=\sqrt{-1}
. Then
A.
-i^2=-1*-1=1
B.
{(-i)}^2=i^2=-1
C.
i^4={(i^2)}^2={(-1)}^2=1
D.
{(-i)}^4={(i^2)}^2={(-1)}^2=1
E.
-i^6=-{(i^2)}^3=-1\times {(-1)}^3=-1\times (-1)=1
All are
1
except option
B
which is
-1
.
When
(3-2i)
is subtracted from
(4 + 7i)
, then the result is
Report Question
0%
1 + 5i
0%
1 + 9i
0%
7 + 5i
0%
7 + 9i
Explanation
We need to subtract
(3-2i)
from
(4+7i)
\therefore 4 + 7i - (3 - 2i)
=4 + 7i - 3 + 2i
= 1 + 9i
The value of k for which polynomial
x^{2} - kx + 4
has equal zeroes is
Report Question
0%
4
0%
2
0%
-4
0%
-2
Explanation
x^{2}-kx+4
has equal roots
\Rightarrow D = 0
\Rightarrow k^{2}-4\times 4\times 1\Rightarrow k^{2} = 16 \Rightarrow \boxed{k = \pm 4}
If the discriminant of a quadratic equation is negative, then its roots are
Report Question
0%
Unequal
0%
Equal
0%
Inverses
0%
Imaginary
Explanation
As
x = \dfrac{-b\pm \sqrt{D}}{2a}
if D is
-
ve
\Rightarrow
imaginary Roots
If the equation
(1 + m^{2}) x^{2} + 2mcx + (c^{2} - a^{2}) = 0
has equal roots, then
c^{2} =
Report Question
0%
a^{2} (1 + m^{2})
0%
a (1 + m^{2})
0%
a^{4} (1 - m^{2})
0%
a^{2} (1 - m^{2})
Explanation
As the eq
^{n}
has equal roots
\Rightarrow D = 0
\Rightarrow (2mc)^{2}-4(1+m^{2})(c^{2}-a^{2}) = 0
\Rightarrow 4-m^{2}c^{2}-4[c^{2}-a^{2}+m^{2}c^{2}-m^{2}a^{2}] = 0
\Rightarrow c^{2} = m^{2}a^{2}+a^{2}\Rightarrow \boxed{c^{2} = a^{2}(1+m^{2})}
Amplitude of
\displaystyle \frac{1 +\sqrt 3i}{ \sqrt3 + i}
is
Report Question
0%
\displaystyle \frac {\pi}{3}
0%
\displaystyle \frac {\pi}{2}
0%
0
0%
\displaystyle \frac {\pi}{6}
Explanation
\displaystyle Z= \frac{1 +\sqrt 3i}{ \sqrt3 + i}
\displaystyle\Rightarrow \left( \frac { 1+\sqrt { 3 } i }{ \sqrt { 3 } +i } \right) \left( \frac { \sqrt { 3 } -i }{ \sqrt { 3 } -i } \right) =\frac { 2\sqrt { 3 } +2i }{ 4 }
\therefore
Amplitude of
Z
is
\tan ^{ -1 }\left({\displaystyle \frac { 1 }{ \sqrt3 } } \right)=\displaystyle\frac{\pi}{6}
Hence, option D.
For
i=\sqrt{-1}
, what is the sum
\left(7+3i\right) + \left(-8+9i\right)
?
Report Question
0%
-1+12i
0%
-1-6i
0%
15+12i
0%
15-6i
Explanation
Given:
(7+3i)+(-8+9i)
= (7+(-8))+(3i+9i)
=(7-8)+12i
=-1+12i
Option A is correct.
If the equation
\displaystyle x^{2}-bx+1=0
does not possess real roots then
Report Question
0%
-3 < b < 3
0%
-2 < b < 2
0%
b > 2
0%
b < -2
Explanation
Given equation is
x^{2}-bx+1=0
If the equation doesnot possess real roots,then
b^2-4ax<0
=>(-b)^2-4(1)(1)<0
=>b^2<4
=>b<\pm 2
\therefore -2<b<2
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
0
Answered
1
Not Answered
49
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page