Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 2 - MCQExams.com

For the quadratic equation ax2+bx+c=0,a,b,c,Q, If D=0 then ...................
Choose the correct option in respect to the statements below.
(P) The roots of the equation are equal.
(Q) The roots of the equation are not equal.
(R) The roots of the equation are rational numbers.
(S) The roots of the equation has no roots.
  • Statements P and R are correct
  • Statements Q and R are correct
  • Only statement S is correct
  • Only statement P is correct
What is the modulus of 2+i2i where i=1
  • 3
  • 12
  • 1
  • None of the above
In the complex plane, what is the distance of 42i from the origin?
  • 2
  • 3.46
  • 4.47
  • 6
  • 12
If the roots of an equation  px2+qx+r=0  are equal, then
  • q2=pr
  • q2=4pr
  • p2=4qr
  • p=qr
In the complex plane, the number 4 + j3 is located in the
  • first quadrant
  • second quadrant
  • third quadrant
  • fourth quadrant
For a quadratic equation if D<0 then which of the following is true?
  • Real roots do not exist
  • Roots are real and equal
  • Roots are rational and distinct
  • Roots are real and distinct
The roots of the equation (z+αβ)3=α3 represent the vertices of a triangle, one of whose sides is of length
  • 3|αβ|
  • 3|α|
  • 3|β|
  • None of these
Put the following in the form of A + iB :
(32i)(2+3i)(1+2i)(2i)
  • 34+94i
  • 63251625i
  • 54+94i
  • 14+74i
State true or false:
The following quadratic equations has real roots  
3a2x2+8abx+4b2=0,a,b0
  • True
  • False
When will the quadratic equation ax2+bx+c=0 NOT have Real Roots?
  • b24ac0
  • b24ac>0
  • b24ac<0
  • None of these

If the value of 'b24ac' is greater than zero, the quadratic equation ax2+bx+c=0 will have


  • Two Equal Real Roots.
  • Two Distinct Real Roots.
  • No Real Roots.
  • No Roots or Solutions.
If a,b,c are real and b24ac is perfect square then the roots of the equation ax2+bx+c=0, will be:
  • Rational & distinct
  • Real & equal
  • Irrational & distanct
  • Imaginary & distinct

If the value of 'b24ac' is less than zero, the quadratic equation ax2+bx+c=0 will have


  • Two Equal Real Roots.
  • Two Distinct Real Roots.
  • No Real Roots.
  • None of the above.
The number of solution of z2+ˉz=0 is
  • 5
  • 4
  • 2
  • 3
arg(32) equals
  • π2
  • π2
  • 0
  • π
Find the which of the complex number has greatest modulus.
  • 75i
  • 3+2i
  • 8+15i
  • 3(1i)
The roots of the equation x2+23x+3=0 are 
  • real and unequal
  • rational and equal
  • irrational and equal
  • irrational and unequal
 For any complex number z the minimum value of |z|+|z2013i| is...
  • 2010
  • 2011
  • 2013
  • 2012
Which of the following is true
  • (3+5)(35)=14
  • (2+3)(3+23)=73i
  • (2+3i)2=(5+12i)
  • (57i)2=44145i
Argument and modulus of [1+i1i]2013 are respectively ____
  • π2 and 1
  • π2 and 2
  • 0 and 2
  • π2 and 1
 If z1=3i,z2=1+i3, then amp(z1+z2)= 
  • π12
  • π15
  • π6
  • π4
If the roots of 2x2+3x+p=0 be equal, then the value of p is :
  • 98
  • 65
  • 43
  • 54
If 2x2:22x=8k:1, then equation has only one solution if
  • k>13
  • k=13
  • k<13
  • k=13
If z1=3+4iz2=45i Then find z1+z2
  • 7-i
  • 7+i
  • 7+9i
  • None of these
Find the least positive value of n, if (1+i1i)n=1
  • 1
  • 2
  • 3
  • 4
The complex numbers z1=8+9i,z2=46i then z1z2
  • 4+15i
  • 43i
  • 12+3i
  • 1215i
If z is a complex number such that |z|=1, then |1ˉz| is 
  • 0
  • 1
  • 2
  • 1
If z1=3+4i,z2=2i find z2z1
  • -1-5i
  • 2-5i
  • 1+5i
  • 1-5i
If αϵ(1,1) then roots of the quadratic equation (a1)x2+ax+1a2=0 are
  • real
  • imaginary
  • both equal
  • none of these
If z1=4+i,z2=4i find z1z2
  • 17
  • 16
  • 17i
  • 16i
z1=9+8i   |z|=
  • 145
  • 163
  • 117
  • 137
If (x+iy)(23i)=4+i(12) then x+y=
  • 32
  • 12
  • 0
  • 23
If z1 and z2 are two complex numbers, then Re(z1z2) is:
  • Re(z1)Re(z2)
  • Re(z1).Re(z2)Im(z1).Im(z2)
  • Im(z1).Re(z2)
  • Re(z1).Im(z2)
|(3+i)(2i)1+i|=
  • 5
  • 52
  • 10
  • 5
The real part of (1+i3i)2=
  • 1
  • 16
  • 16ω2
  • 325
If z=1+3i then z2+2z+10=
  • 0
  • 1
  • 1
  • 2
In the argand diagram, the complex number z is in the fourth quadrant,  then ¯z, z, ¯z are respectively are in quardrants
  • 1,3,2
  • 1,2,3
  • 3,2,1
  • 2,1,3
The value of 1+(1+i)+(1+i)2+(1+i)3=
  • 0
  • 5i
  • 4i
  • 3i
If (5+3i)(x+iy)=34i then 34x=
  • 1
  • 2
  • 3
  • 4
If z1, z2 are the complex numbers such that |z1+z2|=|z1|+|z2| then arg z1 arg z2 is
  • π
  • π2
  • 0
  • π2
The simplified value of 1i1+i is:
  • i
  • i
  • 1
  • 2i

The minimum value of |z|+|z1|+|z2| is
  • 0
  • 1
  • 2
  • 4
If α and β are real then |α+iββ+iα|= 
  • Lies betwen 0 and 1
  • = 1
  • >1
  • 2
If m1m2m3 and m4 respectively denote the moduli of the complex numbers 1+4i,3+i,1i and 23i then the correct order among the following is :
  • m1<m2<m3<m4
  • m4<m3<m2<m1
  • m3<m2<m4<m1
  • m3<m1<m2<m4
The principal argument of z=3+3i is:
  • π4
  • π4
  • 3π4
  • 3π4
Assertion (A): The principal amplitude of complex number x+ix is π4.
Reason (R): The principal amplitude of a complex number x+iy is π4 if y=x.
  • Both A and R are true and R is the correct explanation of A
  • A is true R is false
  • A is false, R is true
  • Both A and R are false
The area of the triangle formed by the three complex numbers 1+i, i1 , 2i in the Argand diagram is:
  • 12
  • 1
  • 2
  • 2
The modulus of (1+i)(3+4i)=
  • 50
  • 25
  • 10
  • 102
If z1z2z3 are complex numbers such that |z1|=|z2|=|z3|=|1z1+1z2+1z3|=1, then |z1+z2+z3| is:
  • Equal to 1
  • Less than 1
  • Greater than 3
  • Equal to 3
lf (x+iy)(2+cosθ+isinθ)=3 then x2+y24x+3 is
  • 0
  • 1
  • 3
  • 4
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers