Explanation
We have,
2+3isinθ1−2isinθ
On rationalize and we get,
2+3isinθ1−2isinθ×1+2isinθ1+2isinθ
⇒2+3isinθ+4isinθ+6i2sin2θ12−4i2sin2θ
⇒2−sin2θ+7isinθ1+4sin2θ
⇒1+1−sin2θ+7isinθ1+4sin2θ
⇒1+cos2θ+7isinθ1+4sin2θ
⇒1+cos2θ1+4sin2θ+7isinθ1+4sin2θ
⇒1+cos2θ1+4sin2θ+i7sinθ1+4sin2θ
Now,
Then purely imaginary is
Real part of equal to zero.
1+cos2θ1+4sin2θ=0
⇒1+cos2θ=0
⇒cos2θ=−1
⇒cosθ=√−1
⇒θ=cos−1√−1
Hence, this is the answer.
{\textbf{Step -1: Considering option A.}}
{x^2} - 4x + 3\sqrt 2 = 0
\therefore D = {\left( { - 4} \right)^2} - 4\left( 1 \right)\left( {3\sqrt 2 } \right)
\therefore D = 16 - 12\sqrt 2 < 0
{\text{Therefore, it has no real roots}}{\text{.}}
{\textbf{Step -2: Considering option B.}}
{x^2} + 4x - 3\sqrt 2 = 0
\therefore D = {\left( 4 \right)^2} - 4\left( 1 \right)\left( { - 3\sqrt 2 } \right)
\therefore D = 16 + 12\sqrt 2 > 0
{\text{Therefore, it has real roots}}{\text{.}}
{\textbf{Step -3: Considering option C.}}
{x^2} - 4x - 3\sqrt 2 = 0
\therefore D = {\left( { - 4} \right)^2} - 4\left( 1 \right)\left( { - 3\sqrt 2 } \right)
{\textbf{Step -4: Considering option D.}}
3{x^2} + 4\sqrt 3 x + 4 = 0
\therefore D = {\left( {4\sqrt 3 } \right)^2} - 4\left( 3 \right)\left( 4 \right)
\therefore D = 48 - 48
\therefore D = 0
{\text{Therefore, it has real and equal roots}}{\text{.}}
{\textbf{Hence, option A. is correct answer.}}
Please disable the adBlock and continue. Thank you.