Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

CBSE Questions for Class 11 Engineering Maths Complex Numbers And Quadratic Equations Quiz 9 - MCQExams.com

If z1=8+4i, z2=6+4i and arg(zz1zz2)=π4, then z satisfy 
  • |z74i|=1
  • |z75i|=2
  • |z4i|=8
  • |z7i|=18
If a,bR, then |ea+ib| is equal to

  • ea
  • eb
  • 1
  • None of these
If z1 and z2 two non-zero complex number such that |z1+z2|=|z1|+|z2|, then argz1argz2 is equal to
  • p
  • p/2
  • p/2
  • 0
z is a complex number. If a=|x|+|y| and
b=2|x+iy| then which of the following is
true

  • ab
  • a>b
  • none of these
  • ab+2
If arg (z)<0, then arg (z)arg(z)
  • π
  • π
  • π2
  • π2
Number of complex numbers z such that |z|=1 and |zz+ˉzz|=1 is
  • 4
  • 1
  • 8
  • more then 8
The modulus of (3+2i)2(43i) is:
  • 135
  • 115
  • 95
  • 75
Let P(x)=x36x2+Bx+C has 1+5i as a zero and B,C real number, then value of (B+C) is
  • -70
  • 70
  • 24
  • 138
Arg {sin8π5+i(1+cos8π5)} is equal to
  • 3π10
  • 7π10
  • 4π5
  • 3π5
A value of θ for which2+3isinθ12isinθ is purely imaginary, is:
  • sin1(13)
  • π3
  • cos11
  • Noneofthese
Purely imaginary then find the sum of statement i a,b 
  • 5π6
  • π
  • 3π4
  • 2π3
If α and β are the roots of 4x216x+c=0, c>0 such that 1<α<2<β<3, then the no.of integer values of c is 
  • 17
  • 14
  • 18
  • 15
The principle amplitude of (sin40o+icos40o)5 is
  • 70o
  • 1100o
  • 70110
  • 7070
Let 'z' be a complex number satisfying |z2i|5, Then |z-14-6i| lies in 
  • {8,18}
  • {2,8}
  • {0,2}
  • {3,7}
If  w=zz13i  and  |w|=1  then  z  lies on
  • a circle
  • an ellipse
  • a parabola
  • a straight line
If the roots of the equation mx2+(2m1)x+m2=0 are rational, then if mI it will be 
  • odd integer
  • even integer
  • zero only
  • none of these
The discriminant of 2x2xp=0 is 49, then p= ______
  • 6
  • 24
  • 48
  • None of these
If |z3i|<5, then |i(z+1)+1|<25.
  • True
  • False
The value of the sum 13n=1(in+in+1) , where i=1 , equals
  • i
  • i1
  • i
  • 0
z1 and z2 are two non-zero complex numbers such that z1=2+4iz2=56i, then z2z1 equals
  • 310i
  • 3+10i
  • 72i
  • 1024i
IF z1=1+i,z2=1i find z1z2
  • z1+z2
  • z1z2
  • z1/z2
  • None.
If  z=cosπ4+isinπ6,  then
  • |z|=1,arg(z)=π4
  • |z|=1,arg(z)=π6
  • |z|=32,arg(z)=5π24
  • |z|=32,arg(z)=tan112
The real value of θ, for which the expression 1+icosθ12icosθ is a real number is
  • 2nπ+3π2,nI
  • 2nπ3π2,nI
  • 2nπ±π2,nI
  • 2nπ+π4,nI
Given z1+3z24z3=0 then z1,z2,z3 are
  • collinear
  • can form sides of equilateral Δ
  • lie on circle
  • none of these
The greatest and least value of |z| if z satisfies |z5+5i| 5 are 
  • 10 , 52
  • 52 , 5
  • 10 , 0
  • 5+52 , 525
If z be a complex number satisfying z4+z3+2z2+z+1=0 then |z|=
  • 12
  • 34
  • 1
  • none of these
The discriminant of the quadratic equation (2λ)x2+(a2)x8λ=0 where a,λ,N is surely 
  • A perfect square
  • A prime number
  • A composite number
  • An even number
Express the following complex numbers in the standard form a+ib :
(114i21+i)(34i5+i)
  • 307442+i599442i
  • 307442i599442i
  • 307442+i599442i
  • None of the above
Let z be a complex number such that the principal value of argument, arg z<0. Then arg(z)arg(z) is
  • π2
  • ±π
  • π
  • π
Express the following complex numbers in the standard form a+ib :
\dfrac{\left ( 2+i \right )^{3}}{2+3i}
  • \dfrac{37}{13}-\dfrac{16}{13}i
  • \dfrac{-37}{13}+\dfrac{16}{13}i
  • \dfrac{37}{13}+\dfrac{16}{13}i
  • None of the above
The imaginary roots of the equation { ({ x }^{ 2 }+2) }^{ 2 }+8{ x }^{ 2 }=6x({ x }^{ 2 }+2) are ____________.
  • 1+i
  • 2\pm i
  • -1\pm i
  • none of these
Express the following complex numbers in the standard form a+ib :
\dfrac{3-4i}{\left ( 4-2i \right )\left ( 1+i \right )}
  • \dfrac{1}{4}+\dfrac{3}{4}i
  • \dfrac{1}{4}-\dfrac{3}{4}i
  • \dfrac{-1}{4}-\dfrac{3}{4}i
  • None of the above
Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
1-i
  • \sqrt{2}(cos\,\pi /4+i\, sin\, \pi /4)
  • \sqrt{2}(cos\,\pi /3-i\, sin\, \pi /3)
  • \sqrt{2}(cos\,\pi /4-i\, sin\, \pi /4)
  • \sqrt{2}(cos\,\pi /3+i\, sin\, \pi /3)
If a and b are the nonzero distinct roots of x^2 + ax + b =0, then the minimum vlue of x^2 + ax+b is
  • \dfrac{2}{3}
  • \dfrac{9}{4}
  • \dfrac{-9}{4}
  • \dfrac{-2}{3}
Express the following complex numbers in the standard from a+ib :
\dfrac{5+\sqrt{2}i}{1-\sqrt{2}i}
  • 1-2\sqrt{2}i
  • 1+\sqrt{2}i
  • 1+2\sqrt{2}i
  • 1-\sqrt{2}i
Let z be a complex number such that \left|\dfrac{z-i}{z+2i}\right|=1 and |z|=\dfrac{5}{2}. Then the value of |z+3i| is?
  • \dfrac{7}{2}
  • \dfrac{15}{4}
  • 2\sqrt{3}
  • \sqrt{10}
The real part of (i - \sqrt{3})^{13} is
  • 2^{-10}\sqrt3
  • -2^{12}\sqrt3
  • 2^{-12}\sqrt3
  • -2^{-12}\sqrt3
  • -2^{10}\sqrt3
(1-\sqrt{-1})(1+\sqrt{-1})(5-\sqrt{-7})(5+\sqrt{-7})=?
  • (25+7i)
  • (32+5i)
  • (29-3i)
  • none\ of\ these
arg (-1+i\sqrt{3})=?
  • \dfrac{\pi}{3}
  • \dfrac{2\pi}{3}
  • \pi
  • none\ of\ these
(2-3i)(-3+4i)=?
  • (6+17i)
  • (6-17i)
  • (-6+17i)
  • none\ of\ these
arg (1+i)=?
  • \pi
  • \dfrac{\pi}{2}
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{4}
arg \left(\dfrac{2+6\sqrt{3}i}{5+\sqrt{3}i}\right)=?
  • \dfrac{\pi}{3}
  • \dfrac{\pi}{4}
  • \dfrac{2\pi}{3}
  • \pi
Let z, w be complex numbers such that \bar z + i\bar w =0 and arg zw = \pi. then arg \ z equals
  • \dfrac{\pi}{4}
  • \dfrac{\pi}{2}
  • \dfrac{3\pi}{4}
  • \dfrac{5\pi}{4}
For any complex numbers z_{1} and z_{2} compare List I with with List II and choose the correct answer, using codes given below:
List IList II
arg (z_{1},z_{2})\dfrac{\pi}{2}
arg \left(\dfrac{z_{1}}{z_{2}}\right)arg (z_{1}-arg (z_{2})
arg (z)+arg (\bar{z})arg (z_{1})+arg (z_{2})
arg (i)2\pi
  • (i)-(q), (ii)-(r), (iii)-(s), (iv)-(p)
  • (i)-(r), (ii)-(q), (iii)-(p), (iv)-(s)
  • (i)-(r), (ii)-(q), (iii)-(s), (iv)-(p)
  • none\ of\ these
The principal argument of the complex number 
[(1 + i)^5 (1 + \sqrt{3}i)^2] / [-2i(-\sqrt{3} +i)] is
  • \frac{19\pi}{12}
  • -\frac{17\pi}{12}
  • -\frac{5\pi}{12}
  • \frac{5\pi}{12}
The argument and the principle value of the complex number \dfrac {2+i}{4i+(1+i)^2} are
  • \tan^{-1}(-2)
  • -\tan^{-1} 2
  • \tan^{-1}\left(\dfrac {1}{2}\right)
  • -\tan^{-1}\left(\dfrac {1}{2}\right)
Compare List I with List II and choose the correct answer using codes given below:
List I (Complex number)List II (Its modulus)
(4-3i)10
(8+6i)\dfrac{1}{5}
\dfrac{1}{(3+4i)}1
\dfrac{(3-4i)}{(3+4i)}5
  • (i)-(p), (ii)-(s), (iii)-(r), (iv)-(q)
  • (i)-(s), (ii)-(p), (iii)-(q), (iv)-(r)
  • (i)-(s), (ii)-(p), (iii)-(r), (iv)-(q)
  • (i)-(r), (ii)-(p), (iii)-(s), (iv)-(q)
If b_{1} b_{2}=2\left(c_{1}+c_{2}\right),  then at least one of the equations  x^{2}+b_{1} x   +c_{1}=0  and  x^{2}+b_{2} x+c_{2}=0  has
  • imaginary roots
  • real roots
  • purely imaginary roots
  • none of these
Which of the following equations has no real roots.
  • x^{2} - 4x + 3\sqrt{2} = 0
  • x^{2} + 4x - 3\sqrt{2} = 0
  • x^{2} - 4x - 3\sqrt{2} = 0
  • 3x^{2} + 4\sqrt{3}x + 4 = 0
The modulus and amplitude of the complex number \left[e^{{3}-i\dfrac{\pi}{4}}\right]^{3} are respectively.
  • e^{6},\dfrac{-3\pi}{4}
  • e^{9},\dfrac{\pi}{2}
  • e^{9},\dfrac{-3\pi}{4}
  • e^{9},\dfrac{-\pi}{2}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers