Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 1 - MCQExams.com

Differentiation gives us the instantaneous rate of change of one variable with respect to another.
  • True
  • False
The value of 'a' in order f(x)=3sinxcosx2ax+b decrease for all real values of x, is given by
  • a>1
  • a1
  • a¯2
  • a<¯2
d(tanx.)dx
  • sec2x
  • cot2x
  • cos2x
  • sin2x
\displaystyle \frac{d(\sin x)}{dx}.
  • \cos x
  • \sec x
  • -\cos x
  • - \tan x
Differentiate
\displaystyle \cos x
  • \displaystyle \cos x
  • \displaystyle \cos^2 x
  • \displaystyle \sin x
  • \displaystyle -\sin x
\displaystyle \dfrac{d}{dx} \sec x=
  • \sec x \tan x
  • \cos x \tan x
  • \sin x \tan x
  • \sec x \cot x
State if the given statement is True or False
Derivative of y= \cos  x with respect to x is \sin x.
  • True
  • False
For instantaneous speed, the distance traveled by the object and the time taken are both equal to zero.
  • True
  • False
Derivative of 2\tan x - 7\sec x with respect to x is:
  • 2 \sec x + 7 \tan x
  • \sec x (2 \sec x + \tan x)
  • 2 {\sec}^2 x + \sec x. \tan x
  • \sec x (2 \sec x - 7 \tan x)
\displaystyle \frac{d}{dx}(\sin^{2}x)
  • sin2x
  • cos2x
  • sin4x
  • cos4x
\displaystyle \lim_{x\rightarrow 0}x^{2}\displaystyle \sin\frac{\pi}{x}=
  • 1
  • 0
  • does not exist
  • \infty
\displaystyle \frac{d}{dx}(\tan ^{2}ax).
  • 2 a\tan ax \sec^{2}ax.
  • -2 a\tan ax \sec^{2}ax.
  • a\tan ax \sec^{2}ax.
  • 2 a \cot ax \sec^{2}ax
Differentiate with respect to x \displaystyle x^{4}+3x^{2}-2x
  • \displaystyle 4x^{3}+6x-2
  • \displaystyle 4x^{3}+6x-3
  • \displaystyle 4x^{4}+6x-2
  • None of the above
\displaystyle \frac{d}{dx}\left(\frac{\sin x}{x}\right)
  • \dfrac{x\cos x-\sin x}{x^{2}}.
  • \dfrac{x\cos x+\sin x}{x^{2}}.
  • \dfrac{x\cos x+\sin x}{x^{3}}.
  • \dfrac{x\cos x-\sin x}{x^{3}}.
\displaystyle \frac{d\sin x^{2}}{dx}
  • 2x\cos x^{2}
  • 4x\cos x^{2}
  • 2x\sin x^{2}
  • - 2x\sin x^{2}
\displaystyle \frac{d}{dx}(\tan^{-1}\frac{\sqrt{x}-x}{1+x^{3/2}}.)
  • \displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.
  • \displaystyle \frac{1}{1-x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.
  • \displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{3}}.
  • -\displaystyle \frac{1}{1+x}.\frac{1}{2\sqrt{\left ( x \right )}}-\frac{1}{1+x^{2}}.
If f(x) = \displaystyle \log \left | 2x \right |, x\neq 0 then f'(x) is equal to-
  • \displaystyle \frac{1}{x}
  • \displaystyle -\frac{1}{x}
  • \displaystyle \frac{1}{\left | x \right |}
  • None of these
Differentiation of \displaystyle x^{3}+5x^{2}-2 with respect to x is
  • 3x^{2}+10x
  • 3x^{2}+10
  • 3x^{2}-2
  • 3x^{2}+10x-2
Find the differential equations of all parabolas each having latus rectum 4a and whose axes are parallel to the x-axis.
  • \displaystyle x\left ( \frac{dy}{dx} \right )^{2}=a
  • \displaystyle x\left ( \frac{dy}{dx} \right )^{2}=-a
  • \displaystyle x\left ( \frac{dy}{dx} \right )^{2}=2a
  • \displaystyle x\left ( \frac{dy}{dx} \right )^{2}=-2a
\displaystyle \frac{d}{dx}(\tan^{-1}\sqrt{\left ( \frac{1-\cos x}{1+\cos x} \right )})
  • \displaystyle \frac{1}{2}
  • \displaystyle \frac{1}{4}
  • \displaystyle \frac{1}{\sqrt2}
  • \displaystyle \frac{-1}{2}
\displaystyle \frac{d}{dx}(\tan ^{-1}\frac{\cos x-\sin x}{\cos x+\sin x})
  • -1
  • -2
  • 1
  • x
\displaystyle \lim_{x\rightarrow \infty} \sin x equals
  • 1
  • 0
  • \infty
  • does not exist
If x is very large, then \dfrac {2x}{1+x} is
  • close to 0
  • arbitrarily large
  • lie between 2 and 3
  • close to 2
What is \displaystyle\lim _{ x\rightarrow 0 }{ \frac { \cos { x }  }{ \pi -x }  } equal to?
  • 0
  • \pi
  • \dfrac { 1 }{ \pi }
  • 1
\displaystyle \lim _{ x\rightarrow 0 }{ \cfrac { x{ e }^{ x }-\sin { x }  }{ x }  } is equal to
  • 3
  • 1
  • 0
  • 2
Use limit properties to evaluate \displaystyle\lim_{x\to4}\dfrac{3x^2\tan \dfrac {\pi}{x}}x
  • 12
  • 14
  • 16
  • 18
Evaluate \underset{x \rightarrow 3}\lim \sqrt[4] {x^3} using the properties of limits.
  • 28^{1/4}
  • 25^{1/4}
  • 27^{1/4}
  • 26^{1/4}
\displaystyle{\lim_{x \to 0}} \Bigg(\dfrac{(1+x)^{2}}{e^{x}}\Bigg)^\dfrac{4}{\sin x} is:
  • e^2
  • e^{4}
  • e^8
  • e^{-8}
Differentiate
 2x^{3/2} + 2x^{5/2} +C
  • \cfrac { dy }{ dx } =\sqrt { x } \left( 3+5x \right)
  • \cfrac { dy }{ dx } =\sqrt { x } \left( 3-5x \right)
  • \cfrac { dy }{ dx } =-\sqrt { x } \left( 3+5x \right)
  • None of these
Find \dfrac{dy}{dx} of function y= e^{x^3} +\dfrac{1}{2} \log x
  • 2.e^{x^3}x^2+\dfrac {1}{2x}
  • e^{x^3}x^2+\dfrac {1}{2x}
  • 3.e^{x^3}x^2+\dfrac {1}{2x}
  • 3.e^{x^3}x^2+\dfrac {1}{x}
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers