Loading [MathJax]/jax/output/CommonHTML/jax.js

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 1 - MCQExams.com

Differentiation gives us the instantaneous rate of change of one variable with respect to another.
  • True
  • False
The value of 'a' in order f(x)=3sinxcosx2ax+b decrease for all real values of x, is given by
  • a>1
  • a1
  • a¯2
  • a<¯2
d(tanx.)dx
  • sec2x
  • cot2x
  • cos2x
  • sin2x
d(sinx)dx.
  • cosx
  • secx
  • cosx
  • tanx
Differentiate
cosx
  • cosx
  • cos2x
  • sinx
  • sinx
ddxsecx=
  • secxtanx
  • cosxtanx
  • sinxtanx
  • secxcotx
State if the given statement is True or False
Derivative of y=cosx with respect to x is sinx.
  • True
  • False
For instantaneous speed, the distance traveled by the object and the time taken are both equal to zero.
  • True
  • False
Derivative of 2tanx7secx with respect to x is:
  • 2secx+7tanx
  • secx(2secx+tanx)
  • 2sec2x+secx.tanx
  • secx(2secx7tanx)
ddx(sin2x)
  • sin2x
  • cos2x
  • sin4x
  • cos4x
limx0x2sinπx=
  • 1
  • 0
  • does not exist
ddx(tan2ax).
  • 2atanaxsec2ax.
  • 2atanaxsec2ax.
  • atanaxsec2ax.
  • 2acotaxsec2ax
Differentiate with respect to x x4+3x22x
  • 4x3+6x2
  • 4x3+6x3
  • 4x4+6x2
  • None of the above
ddx(sinxx)
  • xcosxsinxx2.
  • xcosx+sinxx2.
  • xcosx+sinxx3.
  • xcosxsinxx3.
dsinx2dx
  • 2xcosx2
  • 4xcosx2
  • 2xsinx2
  • 2xsinx2
ddx(tan1xx1+x3/2.)
  • 11+x.12(x)11+x2.
  • 11x.12(x)11+x2.
  • 11+x.12(x)11+x3.
  • 11+x.12(x)11+x2.
If f(x)=log|2x|,x0 then f(x) is equal to-
  • 1x
  • 1x
  • 1|x|
  • None of these
Differentiation of x3+5x22 with respect to x is
  • 3x2+10x
  • 3x2+10
  • 3x22
  • 3x2+10x2
Find the differential equations of all parabolas each having latus rectum 4a and whose axes are parallel to the x-axis.
  • x(dydx)2=a
  • x(dydx)2=a
  • x(dydx)2=2a
  • x(dydx)2=2a
ddx(tan1(1cosx1+cosx))
  • 12
  • 14
  • 12
  • 12
ddx(tan1cosxsinxcosx+sinx)
  • 1
  • 2
  • 1
  • x
limxsinx equals
  • 1
  • 0
  • does not exist
If x is very large, then 2x1+x is
  • close to 0
  • arbitrarily large
  • lie between 2 and 3
  • close to 2
What is limx0cosxπx equal to?
  • 0
  • π
  • 1π
  • 1
limx0xexsinxx is equal to
  • 3
  • 1
  • 0
  • 2
Use limit properties to evaluate limx43x2tanπxx
  • 12
  • 14
  • 16
  • 18
Evaluate limx34x3 using the properties of limits.
  • 281/4
  • 251/4
  • 271/4
  • 261/4
limx0 ((1+x)2ex)4sinx is:
  • e2
  • e4
  • e8
  • e8
Differentiate
 2x3/2+2x5/2+C
  • dydx=x(3+5x)
  • dydx=x(35x)
  • dydx=x(3+5x)
  • None of these
Find dydx of function y=ex3+12logx
  • 2.ex3x2+12x
  • ex3x2+12x
  • 3.ex3x2+12x
  • 3.ex3x2+1x
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers