Processing math: 100%
MCQExams
0:0:1
CBSE
JEE
NTSE
NEET
Practice
Homework
×
CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 10 - MCQExams.com
CBSE
Class 11 Engineering Maths
Limits And Derivatives
Quiz 10
Differentiate the following function with respect to x.
(
2
x
2
−
3
)
sin
x
.
Report Question
0%
4
x
sin
x
+
(
2
x
2
+
3
)
cos
x
.
0%
4
x
sin
x
+
(
2
x
2
−
3
)
sin
x
.
0%
4
x
sin
x
+
(
2
x
2
−
3
)
cos
x
.
0%
4
x
cos
x
+
(
2
x
2
−
3
)
cos
x
.
Explanation
Given expression
(
2
x
2
−
3
)
sin
x
differentiating w.r.t.
x
, we get
=
d
d
x
(
(
2
x
2
−
3
)
sin
x
)
=
d
d
x
(
2
x
2
−
3
)
sin
x
+
2
x
2
−
3
d
d
x
(
sin
x
)
=
4
x
sin
x
+
(
2
x
2
−
3
)
cos
x
If
f
is differentiable at
x
=
1
and
lim
h
→
0
1
h
f
(
1
+
h
)
=
5
,
f
′
(
1
)
=
Report Question
0%
0
0%
1
0%
3
0%
4
0%
5
Explanation
f
′
(
1
)
=
l
i
m
h
→
0
f
(
1
+
h
)
−
f
(
1
)
h
; function is differentiable.
and
l
i
m
h
→
0
f
(
1
+
h
)
h
=
5
[Given function is continuous]
⇒
f
(
1
)
=
0
Hence,
f
′
(
1
)
=
l
i
m
h
→
0
f
(
1
+
h
)
h
=
5
If
y
=
√
sin
x
+
√
sin
x
+
√
sin
x
+
.
.
.
.
.
∞
then
d
y
d
x
=
?
Report Question
0%
sin
x
(
2
y
−
1
)
0%
cos
x
(
y
−
1
)
0%
cos
x
(
2
y
−
1
)
0%
n
o
n
e
o
f
t
h
e
s
e
If
y
=
(
tan
x
)
cot
x
then
d
y
d
x
=
?
Report Question
0%
cot
x
.
(
tan
x
)
cot
x
−
1
.
sec
2
x
0%
−
(
tan
x
)
cot
x
.
csc
2
x
0%
(
tan
x
)
cot
x
.
csc
2
x
(
1
−
log
tan
x
)
0%
n
o
n
e
o
f
t
h
e
s
e
If
y
=
√
x
sin
x
then
d
y
d
x
=
?
Report Question
0%
(
x
cos
x
+
sin
x
)
2
√
x
sin
x
0%
1
2
(
x
cos
x
+
sin
x
)
.
√
x
sin
x
0%
1
2
√
x
sin
x
0%
n
o
n
e
o
f
t
h
e
s
e
If
x
=
a
(
cos
θ
+
θ
sin
θ
)
and
y
=
a
(
sin
θ
−
θ
cos
θ
)
then
d
y
d
x
=
?
Report Question
0%
cot
θ
0%
tan
θ
0%
a
cot
θ
0%
a
tan
θ
If
x
=
a
sec
θ
,
y
=
b
tan
θ
then
d
y
d
x
=
Report Question
0%
b
a
sec
θ
0%
b
a
c
o
s
e
c
θ
0%
b
a
cot
θ
0%
n
o
n
e
o
f
t
h
e
s
e
If
y
=
√
1
+
sin
x
1
−
sin
x
then
d
y
d
x
=
?
Report Question
0%
1
2
sec
2
(
π
4
−
x
2
)
0%
1
2
csc
2
(
π
4
−
x
2
)
0%
1
2
csc
(
π
4
−
x
2
)
cot
(
π
4
−
x
2
)
0%
n
o
n
e
o
f
t
h
e
s
e
Explanation
y
=
{
1
+
cos
(
π
2
−
x
)
1
−
cos
(
π
2
−
x
)
}
1
2
=
{
2
cos
2
(
π
4
−
x
2
)
2
sin
2
(
π
4
−
x
2
)
}
1
2
=
cot
(
π
4
−
x
2
)
.
⇒
d
y
d
x
=
−
csc
2
(
π
4
−
x
2
)
×
d
y
d
x
(
π
4
−
x
2
)
∴
d
y
d
x
=
1
2
csc
2
(
π
4
−
x
2
)
If
lim
x
→
0
x
(
1
+
a
cos
x
)
−
b
sin
x
x
3
=
1
then
Report Question
0%
a
=
−
5
/
2
,
b
=
−
1
/
2
0%
a
=
−
3
/
2
,
b
=
−
1
/
2
0%
a
=
−
3
/
2
,
b
=
−
5
/
2
0%
a
=
−
5
/
2
,
b
=
−
3
/
2
The value of
lim
x
→
π
1
+
cos
3
x
sin
2
x
is
Report Question
0%
1/3
0%
2/3
0%
-1/4
0%
3/2
Explanation
We have
lim
x
→
π
1
+
cos
3
x
sin
2
x
=
lim
x
→
π
(
1
+
cos
x
)
(
1
−
cos
x
+
cos
2
x
)
(
1
−
cos
x
)
(
1
+
cos
x
)
=
lim
x
→
π
1
−
cos
x
+
cos
2
x
1
−
cos
x
=
1
+
1
+
1
1
+
1
=
3
2
If
f
′
(
x
)
=
s
i
n
x
+
s
i
n
4
x
.
c
o
s
x
then
f
′
(
x
)
(
2
x
2
+
π
2
)
at
x
=
√
π
2
is equal to
Report Question
0%
−
1
0%
0
0%
−
2
√
2
π
0%
None of these
If
s
i
n
y
=
x
s
i
n
(
a
+
y
)
and
d
y
d
x
=
A
1
+
x
2
−
2
x
c
o
s
a
then the value of
A
is
Report Question
0%
2
0%
c
o
s
a
0%
s
i
n
a
0%
None of these
lim
x
→
0
sin
x
n
(
sin
x
)
m
,
(
m
<
n
)
is equal to
Report Question
0%
1
0%
0
0%
n/m
0%
None of these
Explanation
lim
x
→
0
sin
x
n
(
sin
x
)
m
=
lim
x
→
0
(
sin
x
n
x
n
)
(
x
n
x
m
)
(
x
sin
x
)
m
=
lim
x
→
0
x
n
−
m
=
0
[
∵
m
<
n
]
T
h
e
v
a
l
u
e
o
f
lim
x
→
1
(
2
−
x
)
tan
π
x
2
is
Report Question
0%
e
−
2
π
0%
e
1
/
π
0%
e
2
/
π
0%
e
−
1
/
π
Explanation
lim
x
→
1
(
2
−
x
)
tan
π
x
2
=
lim
x
→
1
{
1
+
(
1
−
x
)
}
tan
π
x
2
=
e
lim
x
→
1
(
1
−
x
)
tan
π
x
2
=
e
lim
x
→
1
(
1
−
x
)
cot
(
π
2
−
π
x
2
)
=
e
lim
x
→
1
(
1
−
x
)
tan
(
π
2
−
π
x
2
)
=
e
2
π
lim
x
→
1
π
2
(
1
−
x
)
t
a
n
(
π
2
(
1
−
x
)
)
=
e
2
π
lim
x
→
0
x
(
e
x
−
1
)
1
−
cos
x
is equal to
Report Question
0%
0
0%
∞
0%
-2
0%
2
Explanation
lim
x
→
0
x
(
e
x
−
1
)
1
−
cos
x
=
lim
x
→
0
2
x
(
e
x
−
1
)
4
sin
2
x
2
=
2
lim
x
→
0
[
(
x
/
2
)
2
sin
2
x
2
]
(
e
x
−
1
x
)
=
2
lim
x
→
π
/
2
[
x
tan
x
−
(
π
2
)
sec
x
]
is equal to
Report Question
0%
1
0%
-1
0%
0
0%
N
o
n
e
o
f
t
h
e
s
e
Explanation
lim
x
→
π
/
2
[
x
tan
x
−
(
π
2
)
sec
x
]
=
lim
x
→
π
/
2
2
x
sin
x
−
π
2
cos
x
(
0
0
f
o
r
m
)
=
lim
x
→
π
/
2
[
2
sin
x
+
2
x
cos
x
]
−
2
sin
x
(Applying L'Hopital's rule)
=
−
1
lim
x
→
−
∞
x
2
tan
1
x
√
8
x
2
+
7
x
+
1
is equal to
Report Question
0%
−
1
2
√
2
0%
1
2
√
2
0%
1
√
2
0%
Does not exist
Explanation
a.
lim
x
→
−
∞
x
2
tan
1
x
√
8
x
2
+
7
x
+
1
=
lim
x
→
−
∞
x
2
tan
1
x
−
x
√
8
+
7
x
+
1
x
2
=
−
lim
x
→
−
∞
tan
1
x
1
x
√
8
+
7
x
+
1
x
2
=
−
1
2
√
2
lim
x
→
0
x
4
(
cot
4
x
−
cot
2
x
+
1
)
(
tan
4
x
−
tan
2
x
+
1
)
is equal to
Report Question
0%
1
0%
0
0%
2
0%
None of these
Explanation
x
4
(
cot
4
x
−
cot
2
x
+
1
)
(
tan
4
x
−
tan
2
x
+
1
)
=
x
4
(
1
+
tan
2
x
+
tan
4
x
)
tan
4
x
(
tan
4
x
−
tan
2
x
+
1
)
=
x
4
tan
4
x
,
x
≠
0
⇒
lim
x
→
0
x
4
(
cot
4
x
−
cot
2
x
+
1
)
(
tan
4
x
−
tan
2
x
+
1
)
=
lim
x
→
0
x
4
tan
4
x
=
1
If
f
(
x
)
=
cos
x
(
1
−
sin
x
)
1
/
3
,
then
Report Question
0%
lim
x
→
π
−
2
f
(
x
)
=
−
∞
0%
lim
x
→
π
+
2
f
(
x
)
=
∞
0%
lim
x
→
π
2
f
(
x
)
=
∞
0%
none of these
Explanation
d.
lim
x
→
π
2
cos
x
(
1
−
sin
x
)
1
/
3
=
lim
t
→
0
−
sin
t
(
1
−
cos
t
)
1
/
3
=
−
lim
t
→
0
2
sin
t
2
cos
t
2
(
2
sin
2
t
2
)
1
/
3
=
−
lim
t
→
0
2
2
/
3
cos
t
2
(
sin
t
2
)
1
/
3
=
0
lim
x
→
0
x
tan
2
x
−
2
x
tan
x
(
1
−
cos
2
x
)
2
is equal to
Report Question
0%
2
0%
-2
0%
1/2
0%
-1/2
Explanation
lim
x
→
0
x
tan
2
x
−
2
x
tan
x
4
sin
4
x
=
lim
x
→
0
x
4
sin
4
x
[
2
tan
x
1
−
tan
2
x
−
2
tan
x
]
=
lim
x
→
0
x
tan
3
x
2
sin
4
x
(
1
−
tan
2
x
)
=
1
2
lim
x
→
0
x
sin
x
1
cos
3
x
1
1
−
tan
2
x
=
1
2
×
1
×
1
1
3
×
1
1
−
0
=
1
2
lim
x
→
1
1
+
sin
π
(
3
x
1
+
x
2
)
1
+
cos
π
x
is equal to
Report Question
0%
0
0%
1
0%
2
0%
4
Explanation
lim
x
→
1
1
+
sin
π
(
3
x
1
+
x
2
)
1
+
cos
π
x
=
lim
x
→
1
1
−
cos
(
3
π
2
−
3
π
x
1
+
x
2
)
1
−
cos
(
π
−
π
x
)
=
lim
x
→
1
2
sin
2
(
3
π
4
−
3
π
x
2
(
1
+
x
2
)
)
2
sin
2
(
π
2
−
π
x
2
)
=
lim
x
→
1
(
3
π
4
−
3
π
x
2
(
1
+
x
2
)
π
2
−
π
x
2
)
2
=
lim
x
→
1
9
(
1
2
−
x
1
+
x
2
1
−
x
)
2
=
lim
x
→
1
9
(
x
−
1
2
(
1
+
x
2
)
)
2
=
0
lim
x
→
1
1
−
x
2
sin
2
π
x
is equal to
Report Question
0%
1
2
π
0%
−
1
π
0%
−
2
π
0%
None of these
Explanation
lim
x
→
1
1
−
x
2
sin
2
π
x
=
−
lim
x
→
1
2
π
(
1
−
x
)
(
1
+
x
)
2
π
sin
(
2
π
−
2
π
x
)
=
−
lim
x
→
1
(
2
π
−
2
π
x
)
sin
(
2
π
−
2
π
x
)
1
+
x
2
π
=
−
1
π
Let
f
(
x
)
=
sin
x
+
a
x
+
b
, then which of the following is/are true.
Report Question
0%
f
(
x
)
=
0
has on;ly one root which is possitive if
a
>
1
,
b
<
0
0%
f
(
x
)
=
0
has on;ly one root which is negative if
a
>
1
,
b
<
0
0%
f
(
x
)
=
0
has on;ly one root which is negaitive if
a
<
−
1
,
b
<
0
0%
None of these
Explanation
f
(
x
)
=
sin
x
+
a
x
+
b
f
(
x
)
=
0
sin
x
+
a
x
+
b
f
′
(
x
)
=
cos
x
+
G
→
when
a
>
l
3
′
(
x
)
>
o
f
(
x
)
↑
increasing
f
″
(
x
)
=
−
sin
x
f
(
x
)
=
sin
x
+
a
x
+
b
f
(
0
)
=
0
+
0
+
b
but
b
<
1
when
a
>
⊥
cos
x
+
a
>
0
f
′
(
x
)
>
0
hence
f
(
x
)
increasing function
f
(
x
)
=
sin
x
+
a
x
+
b
y
=
f
(
0
)
=
sin
0
+
a
×
a
+
b
y
=
b
when,
b
<
0
y
=
b
when
b
>
0
and
a
>
1
But
y
=
sin
x
+
a
x
+
b
y
=
a
x
+
(
b
+
sin
x
)
cos
t
y
=
m
x
+
C
A right line.
A right line cut
X
−
axis
The value of
lim
x
→
a
√
a
2
−
x
2
cot
π
2
√
a
−
x
a
+
x
is
Report Question
0%
2
a
π
0%
−
2
a
π
0%
4
a
π
0%
−
4
a
π
Explanation
lim
x
→
a
√
a
2
−
x
2
⋅
cot
π
2
√
a
−
x
a
+
x
=
lim
x
→
a
√
a
2
−
x
2
tan
π
2
√
a
−
x
a
+
x
=
2
π
lim
x
→
a
π
2
√
a
−
x
a
+
x
tan
π
2
√
a
−
x
a
+
x
(
a
+
x
)
=
4
a
π
Which of the following is not true about
y
=
f
(
x
)
?
Report Question
0%
It is an increasing function
0%
It is a monotonic function
0%
It has infinite points of inflections
0%
None of these
Explanation
f
(
x
)
=
x
+
cos
x
−
a
⇒
f
′
(
x
)
=
1
−
sin
x
≥
0
∀
x
∈
R
.
Thus
f
(
x
)
is increasing in
(
−
∞
,
∞
)
, as for
f
′
(
x
)
=
0
,
x
is not forming an interval.
Also
f
"
(
x
)
=
−
cos
x
=
0
⇒
x
=
(
2
n
+
1
)
π
2
,
n
∈
Z
Hence infinite points of inflection
Now
f
(
0
)
=
1
−
a
.
For positive root
1
−
a
<
0
⇒
a
>
1
. For negative root
1
−
a
>
0
⇒
a
<
1
.
lim
n
→
∞
20
∑
x
=
1
cos
2
n
(
x
−
10
)
is equal to
Report Question
0%
0
0%
1
0%
19
0%
20
Explanation
∵
lim
n
→
∞
cos
2
n
x
=
{
1
,
x
=
r
π
,
r
∈
I
0
,
x
≠
r
π
,
r
∈
I
Here, for
x
=
10
,
lim
n
→
∞
cos
2
n
(
x
−
10
)
=
1
and in all other cases it is zero.
∴
lim
n
→
∞
∞
∑
x
=
1
cos
2
n
(
x
−
10
)
=
1
lim
x
→
0
sin
(
x
2
)
ln
(
cos
(
2
x
2
−
x
)
)
is equal to
Report Question
0%
2
0%
-2
0%
1
0%
-1
Explanation
lim
x
→
0
s
i
n
(
x
2
)
I
n
(
c
o
s
(
2
x
2
−
x
)
)
$$\displaystyle \
lim_{x \to 0}\dfrac{sin(x^2)}{log \left(1-2 sin^2 \left(\dfrac{2x^2-x}{2}\right)\right)}$$
=
lim
x
→
0
s
i
n
(
x
2
)
x
2
x
2
l
o
g
(
1
−
2
s
i
n
2
(
2
x
2
−
x
2
)
)
−
2
s
i
n
2
(
2
x
2
−
x
2
)
[
−
2
s
i
n
2
(
2
x
2
−
x
2
)
]
=
lim
x
→
0
x
2
2
s
i
n
2
(
2
x
2
−
x
2
)
(
2
x
2
−
x
2
)
2
(
2
x
2
−
x
2
)
2
lim
x
→
0
−
2
x
2
(
2
x
2
−
x
)
2
=
lim
x
→
0
−
2
(
2
x
−
1
)
2
=
−
2
Differential coefficient of
sec
(
tan
−
1
x
)
w.r.t. x is
Report Question
0%
x
√
1
+
x
2
0%
x
1
+
x
2
0%
x
√
1
+
x
2
0%
1
√
1
+
x
2
Explanation
a
The value of
lim
x
→
∞
sin
x
x
is
Report Question
0%
0
0%
∞
0%
1
0%
−
1
Explanation
lim
x
→
∞
sin
x
x
Let
x
=
1
/
y
or
y
=
1
x
Som
x
→
∞
⇒
y
→
0
∴
lim
x
→
∞
(
sin
x
x
)
=
lim
y
→
0
y
sin
(
1
y
)
=
lim
y
→
0
y
⋅
lim
y
→
0
sin
1
y
=
0
×
(any variable quantity)
=
0
Hence, option (A) is correct.
The value of
lim
x
→
0
1
−
cos
x
x
2
is
Report Question
0%
0
0%
1
/
2
0%
−
1
/
2
0%
−
1
Explanation
lim
x
→
0
1
−
cos
x
x
2
=
lim
x
→
0
1
−
1
+
2
sin
2
x
/
2
x
2
=
lim
x
→
0
2
sin
2
x
/
2
x
2
=
lim
x
→
0
2
(
sin
x
/
2
x
/
2
)
2
×
1
4
=
1
2
×
lim
x
→
0
(
sin
x
/
2
x
/
2
)
2
=
1
2
×
1
=
1
2
Hence option (B) is correct.
0:0:1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
0
Answered
1
Not Answered
29
Not Visited
Correct : 0
Incorrect : 0
Report Question
×
What's an issue?
Question is wrong
Answer is wrong
Other Reason
Want to elaborate a bit more? (optional)
Practice Class 11 Engineering Maths Quiz Questions and Answers
<
>
Support mcqexams.com by disabling your adblocker.
×
Please disable the adBlock and continue.
Thank you.
Reload page