Processing math: 100%

CBSE Questions for Class 11 Engineering Maths Limits And Derivatives Quiz 12 - MCQExams.com

If y=|cosx|+|sinx| then dydx at x=2π3 is
  • 132
  • 0
  • 12(31)
  • none of these
Let tanα.x+sinα.y=α and α cosecα.x+cosα.y=1 be two variable straight line, α being the parameter. Let P be the point of intersection of the lines. In the limiting position when α0, the point P lies on the line
  • x=2
  • x=1
  • y+1=0
  • y=2
If y=xr=1tan111+r+r2 then dydx is equal to
  • 11+x2
  • 11+(1+x)2
  • 0
  • None of these
Let f and g be differentiable function such that f(x)=2g(x) and g(x)=f(x), and let T(x)=(f(x))2(g(x))2. Then T(x) is equal to
  • T(x)
  • 0
  • 2f(x)g(x)
  • 6f(x)g(x)
The value of limn(1n+1+1n+2+...+16n) is
  • log2
  • log6
  • 1
  • log3
If the prime sign (') represents differentiation w.r.t. x and f=sinx+sin4x.cosx, then f(2x2+π2) at x=π2 is equal to
  • 0
  • 1
  • 22π
  • none of these
For nϵN, let f(x)=min{1tannx,1sinnx,1xn}, xϵ(π2,π2). The left hand derivative of f at x=π4 is
  • 2n
  • 2(n+1)
  • nπ4
  • n(π4)n1
If f (0) = 0 and f(x) is a differentiable and increasing function,then lim x0  x.f(x2)f(x)
  • is always equal to zero
  • may not exist as left hand limit may not exist
  • may not exist as left hand limit may not exist
  • right hand limit is always zero
The left-handed derivative of f(x)=|x|sin(πx) at x=K where K is an integer, is :
  • (1)K(K1)π
  • (1)K1(K1)π
  • (1)K Kπ
  • (1)K1 Kπ
If kr=1cos1β=kπ2 for any k1 and A=kr=1(βr)r, then limxA(1+x)1/3(12x)1/4x+x2 is equal to
  • 0
  • 12
  • π2
  • 56
The value of limx0((sinx)1/x+(1+x)sinx) whre x>0 is
  • 0
  • 1
  • 1
  • 2
The value of limx11x(cos1x)2
  • 14
  • 1/2
  • 2
  • None of these
limx0aex+bcosx+c.exsin2x=4 then b =
  • 2
  • 4
  • -2
  • -4
If x0(t2+2t+2) dt, 2x4
  • The maximum value of f(x) is 1363
  • The minimum value of f(x) is 10
  • The maximum value of f(x) is 26
  • None of these
If x1+y+y1+x=0, then dydx is equal to
  • 1(1+x)2
  • 1(1+x)2
  • 1(1x)2
  • None of these
limxa+{x}sin(xa)(xa)2 

is equal to (where {.} denotes the fraction
part of x and aN

  • 0
  • 1
  • does not exist
  • none of thes
Consider the following statements:
S1:limx0[x]x is an indeterminate form (where [.] denotes greatest integer function).
S2:limxsin(3x)3x=0
S3:limxxsinxx+cos2x does not exist.
S4:limn(n+2)!+(n+1)!(n+3)!(nN=0
State, in order, whether S1,S2,S3,S4 are true or false
  • FTFT
  • FTTT
  • FTFF
  • TTFT
IfAi=xai|xai|,i=1,2,3,.....n and a1<a2<a3....<an,then
limxam(A1A2......An),1mn
  • is equal to (1)m
  • is equal to (1)m+1
  • is equal to (1)nm
  • is equal to (1)nm1
If l=limn3x29x2+74 and m=limn3x29x2+74, then
  • lm
  • l=2m
  • l=m
  • l=m
If limx(x2+x+1x+1axb)=4,then
  • a=1,b=4
  • a=1,b=4
  • a=2,b=3
  • a=2,b=3
Letf(θ)=1tan9θ(1+tanθ)10+(2+tanθ)10+....+(20+tanθ)1020tanθ. The left hand limit of f(θ) as θπ2 is:
  • 1900
  • 2000
  • 2100
  • 2200
if f(x)={cos[x],x0|x|+a,x<0} Find
the value of a , given that limx0f(x)  exists,
where[.]  denotes
  • -1
  • 2
  • 1
  • 0
limxπ4(sin2x)sec22x is equal to 
  • 12
  • 12
  • e12
  • e12
limxπ2cotxcosx(π2x)3 equals
  • 124
  • 116
  • 18
  • 14
Ltx0(cosecx1x)=?
  • 0
  • 1/2
  • 1
  • Does not exits
The value of limx01cos3xxsinxcosx is
  • 25
  • 35
  • 32
  • 34
limx01xx(a arc tanxab arc tanxb) has the value equal to
  • ab3
  • 0
  • (a2b2)6a2b2
  • a2b23a2b2
Integrate:
 limx0(1cos2x)22xtanxxtan2x
  • 2
  • 12
  • 2
  • 12
limn(tanθ+12tanθ2+122tanθ22+...+12ntanθ2n) equals?
  • 1θ
  • 1θ2cot2θ
  • 2cot2θ
  • None of these
limxx2sin(logecosπx)
  • 0
  • π22
  • π24
  • π28
0:0:1


Answered Not Answered Not Visited Correct : 0 Incorrect : 0

Practice Class 11 Engineering Maths Quiz Questions and Answers